Words and Automata - Homework Exercise 9. Burrows-Wheeler Transform

Mikhail Dubov

January 11, 2016

Burrows-Wheeler Transform (BWT)

- Transformation on words: $w \mapsto BWT(w)$
- Constructed as follows:
 - **(1)** List all the cyclic shifts of w:
 - W1W2...Wn
 - $W_2 W_3 \ldots W_1$
 - . . .
 - $W_n W_1 \ldots W_{n-1}$

BWT: Example

Let *w* = *abracadabra*. **Step 1:** Compute cyclic shifts.

	1	2	3	4	5	6	7	8	9	10	11
1	а	b	r	а	С	а	d	а	b	r	а
2	b	r	а	с	а	d	а	b	r	а	а
3	r	а	С	а	d	а	b	r	а	а	b
4	а	С	а	d	а	b	r	а	а	b	r
5	С	а	d	а	b	r	а	а	b	r	а
6	а	d	а	b	r	а	а	b	r	а	С
7	d	а	b	r	а	а	b	r	а	с	а
8	а	b	r	а	а	b	r	а	с	а	d
9	b	r	а	а	b	r	а	с	а	d	а
10	r	а	а	b	r	а	С	а	d	а	b
11	а	а	b	r	а	с	а	d	а	b	r

BWT: Example

Let w = abracadabra. Step 2: Sort.

	1	2	3	4	5	6	7	8	9	10	11
11	а	а	b	r	а	С	а	d	а	b	r
8	а	b	r	а	а	b	r	а	с	а	d
1	а	b	r	а	С	а	d	а	b	r	а
4	а	С	а	d	а	b	r	а	а	b	r
6	а	d	а	b	r	а	а	b	r	а	С
9	b	r	а	а	b	r	а	С	а	d	а
2	b	r	а	с	а	d	а	b	r	а	а
5	с	а	d	а	b	r	а	а	b	r	а
7	d	а	b	r	а	а	b	r	а	с	а
10	r	а	а	b	r	а	с	а	d	а	b
3	r	а	с	а	d	а	b	r	а	а	b

BWT: Example

Let w = abracadabra.

Step 3: Take the last column: BWT(abracadabra) = rdarcaaaabb.

	1	2	3	4	5	6	7	8	9	10	11
1	а	а	b	r	а	С	а	d	а	b	r
2	а	b	r	а	а	b	r	а	С	а	d
3	а	b	r	а	С	а	d	а	b	r	а
4	а	С	а	d	а	b	r	а	а	b	r
5	а	d	а	b	r	а	а	b	r	а	С
6	b	r	а	а	b	r	а	С	а	d	а
7	b	r	а	С	а	d	а	b	r	а	а
8	С	а	d	а	b	r	а	а	b	r	а
9	d	а	b	r	а	а	b	r	а	С	а
10	r	а	а	b	r	а	С	а	d	а	b
11	r	а	C	а	d	а	h	r	а	а	h

Show that $w \mapsto BWT(w)$ is a bijection.

Show that $w \mapsto BWT(w)$ is a bijection.

To show that a function $f: X \to Y : x \mapsto f(x)$ is a bijection, we must show that it is:

Show that $w \mapsto BWT(w)$ is a bijection.

To show that a function $f: X \to Y : x \mapsto f(x)$ is a bijection, we must show that it is:

- well-defined:
 - $f \subseteq X \times Y$
 - the domain of *f* is *X*
 - $\langle x, y_1 \rangle, \langle x, y_2 \rangle \in f \implies y_1 = y_2$

Show that $w \mapsto BWT(w)$ is a bijection.

To show that a function $f: X \to Y : x \mapsto f(x)$ is a bijection, we must show that it is:

- well-defined:
 - $f \subseteq X \times Y$
 - the domain of *f* is *X*
 - $\langle x, y_1 \rangle, \langle x, y_2 \rangle \in f \implies y_1 = y_2$
- injective:

 $f(x_1) = f(x_2) \implies x_1 = x_2$

Show that $w \mapsto BWT(w)$ is a bijection.

To show that a function $f: X \to Y : x \mapsto f(x)$ is a bijection, we must show that it is:

- well-defined:
 - $f \subseteq X \times Y$
 - the domain of f is X
 - $\langle x, y_1 \rangle, \langle x, y_2 \rangle \in f \implies y_1 = y_2$
- injective:

 $f(x_1) = f(x_2) \implies x_1 = x_2$

surjective:

for all $y \in Y$ there is some $x \in X$ such that f(x) = y

$BWT: X \rightarrow Y: x \mapsto BWT(x)$

Well-defined?

$BWT: X \rightarrow Y: x \mapsto BWT(x)$

Well-defined? **YES**.

$BWT: X \to Y: x \mapsto BWT(x)$

Well-defined? YES.

- X, Y are both sets of all words
- *BWT*(*x*) is, by construction, defined for any word *x* and is a permutation of the letters of *x*
- So *BWT*(*x*) maps a word *x* to another word of the same length containing the same characters
- The construction of BWT(x) is deterministic, so $BWT(x) = y_1, BWT(x) = y_2 \implies y_1 = y_2$

$$BWT(x_1) = BWT(x_2) \implies x_1 = x_2$$

Injective?

$$BWT(x_1) = BWT(x_2) \implies x_1 = x_2$$

Injective? Strictly speaking, NO.

$$BWT(x_1) = BWT(x_2) \implies x_1 = x_2$$

Injective? Strictly speaking, NO.

- BWT(x) is injective up to a conjugacy class
- But, say, BWT(abracadabra) = BWT(cadabraabra) = rdarcaaaabb
- Ways to make *BWT*(*x*) truly injective:
 - Use a special **termination symbol** (*abracadabra*\$) to be able to reconstruct x from *BWT*(x) in a unique way
 - Alternatively, output the index *I* of the row at which *x* appears in the table for *BWT*(*x*) (e.g. for *BWT*(*abracadabra*), *I* = 3)

Is BWT a bijection?

for all $y \in Y$ there is some $x \in X$ such that f(x) = y

Surjective?

Is BWT a bijection?

for all $y \in Y$ there is some $x \in X$ such that f(x) = y

Surjective?

Can we actually reconstruct $w = BWT^{-1}(BWT(w))$?

Is BWT a bijection?

for all $y \in Y$ there is some $x \in X$ such that f(x) = y

Surjective?

Can we actually reconstruct $w = BWT^{-1}(BWT(w))$? **YES**!

for all $y \in Y$ there is some $x \in X$ such that f(x) = y

Surjective?

Can we actually reconstruct $w = BWT^{-1}(BWT(w))$? **YES**!

Make use of the following observations:

- We have only the last column in the table, the BWT(w)
- The first column in the table can be reconstructed by sorting BWT(w)
- In each row (except for the row I where we have w), Last(i) precedes First(i) in the original word
- Due to the way the table was constructed, words starting from the same letter in the *last* column appear in lexicographical order relative to one another

BWT(abraca) = caraab

abraca

Is BWT a bijection?

for all $y \in Y$ there is some $x \in X$ such that f(x) = y

Surjective?

Is BWT a bijection?

for all $y \in Y$ there is some $x \in X$ such that f(x) = y

Surjective? NO!

for all $y \in Y$ there is some $x \in X$ such that f(x) = y

Surjective? NO!

- $BWT^{-1}(t)$ is not defined on all the words
- For example, try to compute $BWT^{-1}(bccaaa)$:

	1	2	3	4	5	6
1	а	?	?	?	?	b
2	а	?	?	?	?	С
3	а	?	?	?	?	с
4	b	?	?	?	?	а
5	С	?	?	?	?	а
6	с	?	?	?	?	а

for all $y \in Y$ there is some $x \in X$ such that f(x) = y

Surjective? NO!

- $BWT^{-1}(t)$ is not defined on all the words
- For example, try to compute $BWT^{-1}(bccaaa)$:

С

for all $y \in Y$ there is some $x \in X$ such that f(x) = y

Surjective? NO!

- $BWT^{-1}(t)$ is not defined on all the words
- For example, try to compute $BWT^{-1}(bccaaa)$:

Bijective version of BWT

! Burrows-Wheeler Transform is reversible, but not invertible.

Bijective version of BWT

- ! Burrows-Wheeler Transform is reversible, but not invertible.
- ! Burrows-Wheeler Transform is injective, but not bijective.

Bijective version of BWT

- ! Burrows-Wheeler Transform is reversible, but not invertible.
- ! Burrows-Wheeler Transform is injective, but not bijective.

However, there is a bijective version of the BWT (Burrows-Wheeler-Scott Transform) [3]:

- Obtain the Lyndon factorization of $w: w = l_1^{n_1} \dots l_r^{n_r}$, where $r \ge 0, n_1, \dots, n_r \ge 1$, and $l_1 > \dots > l_r$ are Lyndon words
- Sort the rotations of all Lyndon words of the input (they are no longer of the same length! Strings of different lengths are compared as if both are repeated infinitely)
- BWST(w) is the last character of each rotation in the sorted output

Burrows-Wheeler-Scott Transform: Example

w = bcbccbcbcabb

Lyndon factorization: $w = (bcbcc)(bc)^2(abb)$

	Rotations of $l_1 \dots l_r$
1	bcbcc
2	cbcbc
3	ccbcb
4	bccbc
5	cbccb
6	bc
7	сb
8	bc
9	c b
10	abb
11	bab
12	bba

Burrows-Wheeler-Scott Transform: Example

w = bcbccbcbcabbBWST(w) = bbaccccbbcbb

	Sorted rotations
1	a b b a b b
2	bab bab
3	b b a b b a
4	<mark>bс</mark> bсbс
5	<mark>bс</mark> bсbс
6	bсbссb
7	ხ c c b c b
8	с b с b с b
9	с b с b с b
10	cbcbc c
11	с b с с b с
12	ссЬсЬс

Context

Burrows-Wheeler Transform in practice:

- BWT is a reversible transformation that tends to group characters together: BWT(abracadabra) = rdarcaaabb
- Text compression algorithms based on the BWT and move-to-front coding [1] achieve:
 - compression within a percent or so of that achieved by the best statistical modelling techniques
 - speeds comparable to those of algorithms based on the techniques of Lempel and Ziv
- With some additional information about the correspondance between the BWT and the Suffix Array for the text, enables pattern matching in $O(|P| + occ \cdot \log |T|)$
- ⇒ Many practical full-text indexes are based on the BWT [2]

References

- M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical report, 1994.
- [2] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In *Proceedings of the 41st Annual Symposium on Foundations of Computer Science*, FOCS '00, pages 390-, Washington, DC, USA, 2000. IEEE Computer Society.
- [3] Manfred Kufleitner. On bijective variants of the burrows-wheeler transform. In Jan Holub and Jan Ždárek, editors, *Proceedings* of the Prague Stringology Conference 2009, pages 65–79, Czech Technical University in Prague, Czech Republic, 2009.