Sublinear Geometric Algorithms Successor search. Polygonal and polyhedral intersections

Mikhail Dubov

March 22, 2016

Outline

- 2 1D: Successor searching
- 3 2D: Polygonal intersection
- 4 3D: Polyhedral intersection
- 6 Applications

Outline

- 2 1D: Successor searching
- 3 2D: Polygonal intersection
- ④ 3D: Polyhedral intersection
- **5** Applications

Context: Geometric algorithms

• <u>70's-90's</u>: Classical computational geometry algorithms

- \rightarrow Convex hulls
- \rightarrow Voronoi diagrams
- \rightarrow Delaunay trianguations
- \rightarrow Linear programming

Context: Geometric algorithms

• <u>70's-90's</u>: Classical computational geometry algorithms

- \rightarrow Convex hulls
- \rightarrow Voronoi diagrams
- ightarrow Delaunay trianguations
- \rightarrow Linear programming
- <u>00's</u>: Research on sublinear algorithms
 - Motivation: Availability of massive geometric datasets
 - **Problem:** Impossible to examine more than a fraction of the input

Context: Sublinear geometric algorithms

Two main approaches to achieve sublinearity:

Context: Sublinear geometric algorithms

Two main approaches to achieve sublinearity:

• Data preprocessing

- Look at the whole data once, make the subsequent queries fast
- **Example:** Point location in \mathbb{R}^k
 - One can build a kd-tree in O(n)
 - Nearest neighbor search: O(log n) per query on average

Context: Sublinear geometric algorithms

Two main approaches to achieve sublinearity:

• Data preprocessing

- Look at the whole data once, make the subsequent queries fast
- **Example:** Point location in \mathbb{R}^k
 - One can build a kd-tree in O(n)
 - Nearest neighbor search: O(log n) per query on average

Randomization

- Look only at a portion of the data
- **Example:** Point location in Delaunay triangulations (*stay tuned*)
 - Expected $O(\sqrt{n})$ time per query without preprocessing

Two main types of randomized algorithms:

Two main types of randomized algorithms:

- Monte Carlo algorithms:
 - Running time is bounded
 - $\mathbb{P}(\mathsf{Results are correct}) < 1$

Two main types of randomized algorithms:

• Monte Carlo algorithms:

- Running time is bounded
- $\mathbb{P}(\mathsf{Results are correct}) < 1$
- Ex.: Miller-Rabin primality test

Two main types of randomized algorithms:

• Monte Carlo algorithms:

- Running time is bounded
- $\mathbb{P}(\text{Results are correct}) < 1$
- Ex.: Miller-Rabin primality test
- Las Vegas algorithms:
 - E(Running time) is bounded
 - Results are always correct

Two main types of randomized algorithms:

• Monte Carlo algorithms:

- Running time is bounded
- $\mathbb{P}(\text{Results are correct}) < 1$
- Ex.: Miller-Rabin primality test
- Las Vegas algorithms:
 - E(Running time) is bounded
 - Results are always correct
 - Ex.: Randomized QuickSort

Random pivot selection $\implies O(n^2)$ time very unlikely

Two main types of randomized algorithms:

• Monte Carlo algorithms:

- Running time is bounded
- $\mathbb{P}(\mathsf{Results are correct}) < 1$
- Ex.: Miller-Rabin primality test
- Las Vegas algorithms:
 - E(Running time) is bounded
 - Results are always correct
 - Ex.: Randomized QuickSort

Random pivot selection $\implies O(n^2)$ time very unlikely

 \rightarrow Monte Carlo algorithms sometimes give wrong answers

 \rightarrow Las Vegas algorithms sometimes run for a very long time

Our focus

In what follows, we will cover several

• randomized Las Vegas algorithms

Our focus

In what follows, we will cover several

- randomized Las Vegas algorithms
- with no extra preprocessing

Our focus

In what follows, we will cover several

- randomized Las Vegas algorithms
- with no extra preprocessing
- having $\mathbb{E}(\operatorname{Running time}) = O(\sqrt{n}).$

Our focus

In what follows, we will cover several

- randomized Las Vegas algorithms
- with no extra preprocessing
- having $\mathbb{E}(\operatorname{Running time}) = O(\sqrt{n}).$

Credit for images: Chazelle et al.

Outline

- 2 1D: Successor searching
- 3 2D: Polygonal intersection
- ④ 3D: Polyhedral intersection
- **5** Applications

Problem

Given a sorted doubly-linked list of n keys and a number x, find the smallest key $y \ge x$ (the successor of x).

Problem

Given a sorted doubly-linked list of n keys and a number x, find the smallest key $y \ge x$ (the successor of x).

Example:

succ(50) = 62succ(12) = 12

Problem

Given a sorted doubly-linked list of n keys and a number x, find the smallest key $y \ge x$ (the successor of x).

Problem

Given a sorted doubly-linked list of n keys and a number x, find the smallest key $y \ge x$ (the successor of x).

Complexity depends on how the list is stored:

Problem

Given a sorted doubly-linked list of n keys and a number x, find the smallest key $y \ge x$ (the successor of x).

Complexity depends on how the list is stored:

The location of elements is unknown

ightarrow O(n) time, o(n) impossible

Problem

Given a sorted doubly-linked list of n keys and a number x, find the smallest key $y \ge x$ (the successor of x).

Complexity depends on how the list is stored:

The location of elements is unknown

ightarrow O(n) time, o(n) impossible

② List elements are stored in consecutive locations \checkmark

ightarrow expected $O(\sqrt{n})$ time (Chazelle et al. [2005])

Problem

Given a sorted doubly-linked list of n keys and a number x, find the smallest key $y \ge x$ (the successor of x).

Complexity depends on how the list is stored:

The location of elements is unknown

ightarrow O(n) time, o(n) impossible

② List elements are stored in consecutive locations \checkmark

 34
 97
 12
 3
 38
 31
 62

ightarrow expected $O(\sqrt{n})$ time (Chazelle et al. [2005])

Selements are consecutive and ordered

 $3 \leftrightarrow 12 \leftrightarrow 31 \leftrightarrow 34 \leftrightarrow 38 \leftrightarrow 62 \leftrightarrow 97$

 $\rightarrow O(\log n)$ time (binary search)

Successor searching: Idea of an algorithm

Successor searching: Idea of an algorithm

succ(50) = ?

Sample some elements from the list:

Successor searching: Idea of an algorithm

succ(50) = ?

Sample some elements from the list:

 $3 \longleftrightarrow 8 \longleftrightarrow 12 \longleftrightarrow 31 \longleftrightarrow 34 \longleftrightarrow 38 \longleftrightarrow 62 \longleftrightarrow 97$

Find the elements in the sample that surround our target:

Successor searching: Idea of an algorithm

succ(50) = ?

Sample some elements from the list:

 $3 \longleftrightarrow 8 \longleftrightarrow 12 \longleftrightarrow 31 \longleftrightarrow 34 \longleftrightarrow 38 \longleftrightarrow 62 \longleftrightarrow 97$

Find the elements in the sample that surround our target:

Traverse the sublist and find the successor:

Successor searching: Randomized algorithm

Algorithm: Randomized successor searching in $O(\sqrt{n})$ time

Input : Doubly-linked list
$$A = A[1] \dots A[n]$$
 of n numbers stored in
an array (table); number x
Output: The smallest number $y \in A$ s.t. $y \ge x$ (if exists)
1 Sample $S \subset A$, $|S| = \sqrt{n}$, from A uniformly at random
2 $p = \operatorname{argmax}_{i=1\dots\sqrt{n}} S[i]$ s.t. $S[i] \le x$ // predecessor in S
3 $q = \operatorname{argmin}_{i=1\dots\sqrt{n}} S[i]$ s.t. $S[i] \ge x$ // successor in S
4 $s = \operatorname{argmin}_{i=p\dots s} A[i]$ s.t. $A[i] \ge x$ // traverse A from p
5 return $A[s]$

Successor searching: Randomized algorithm

Algorithm: Randomized successor searching in $O(\sqrt{n})$ time

Input : Doubly-linked list
$$A = A[1] \dots A[n]$$
 of n numbers stored in
an array (table); number x
Output: The smallest number $y \in A$ s.t. $y \ge x$ (if exists)
1 Sample $S \subset A$, $|S| = \sqrt{n}$, from A uniformly at random
2 $p = \operatorname{argmax}_{i=1\dots\sqrt{n}} S[i]$ s.t. $S[i] \le x$ // predecessor in S
3 $q = \operatorname{argmin}_{i=1\dots\sqrt{n}} S[i]$ s.t. $S[i] \ge x$ // successor in S
4 $s = \operatorname{argmin}_{i=p\dots s} A[i]$ s.t. $A[i] \ge x$ // traverse A from p
5 return $A[s]$

- Note: p and q may not exist
- Elements should be:
 - consecutive for efficient sampling in step 1
 - doubly-connected for list traversal in step 4

Theorem

Successor searching can be done in $O(\sqrt{n})$ expected time per query, which is optimal.

Theorem

Successor searching can be done in $O(\sqrt{n})$ expected time per query, which is optimal.

Proof

Some intuition:

- Our sample S is a subset of \sqrt{n} elements from A, |A| = n
- We locate p and q in our sample in $O(|S|) = O(\sqrt{n})$ time
- The expected distance between these two elements is $|A|/|S| = n/\sqrt{n} = \sqrt{n}$
- So traversing $A[p] \dots A[q]$ takes $O(\sqrt{n})$ expected time

Proof (Cont.)

Part I: Expected time is $O(\sqrt{n})$.

• Let A[s] be the desired successor

Proof (Cont.)

Part I: Expected time is $O(\sqrt{n})$.

- Let A[s] be the desired successor
- Let S[k] be the nearest element to A among those in S
Proof (Cont.)

Part I: Expected time is $O(\sqrt{n})$.

- Let A[s] be the desired successor
- Let S[k] be the nearest element to A among those in S
- Event Q_d : we don't hit any of $A[s-d] \dots A[s+d]$ after taking \sqrt{n} random samples

Proof (Cont.)

Part I: Expected time is $O(\sqrt{n})$.

- Let A[s] be the desired successor
- Let S[k] be the nearest element to A among those in S
- Event Q_d : we don't hit any of $A[s-d] \dots A[s+d]$ after taking \sqrt{n} random samples
- $\mathbb{P}(dist(A[s], S[k]) = d) = \mathbb{P}(Q_{d-1}) \mathbb{P}(Q_d)$

Proof (Cont.)

Part I: Expected time is $O(\sqrt{n})$.

- Let A[s] be the desired successor
- Let S[k] be the nearest element to A among those in S
- Event Q_d : we don't hit any of $A[s-d] \dots A[s+d]$ after taking \sqrt{n} random samples
- $\mathbb{P}(dist(A[s], S[k]) = d) = \mathbb{P}(Q_{d-1}) \mathbb{P}(Q_d)$
- $\mathbb{E}(dist(A[s], S[k]) = \sum_{i \ge 1} i \cdot (\mathbb{P}(Q_{i-1}) \mathbb{P}(Q_i)) = \sum_{i \ge 0} \mathbb{P}(Q_i)$ $\leq \sqrt{n} \sum_{c \ge 0} \mathbb{P}(Q_{c\sqrt{n}}) \leq \sqrt{n} \sum_{c \ge 0} (1 - c/\sqrt{n})^{\sqrt{n}}$ $\leq \sqrt{n} \sum_{c \ge 0} e^{-c} = O(\sqrt{n})$

Proof (Cont.)

Part II: $O(\sqrt{n})$ is optimal.

• Yao's minimax principle:

E(Running time of the optimal Las Vegas randomized algorithm)

> ≥ E(Running time of an optimal deterministic algorithm for any fixed input distribution)

- Study the distribution of difficult inputs
- Show that no deterministic algorithm can perform well on it

Proof (Cont.)

Part II: $O(\sqrt{n})$ is optimal.

- Our model:
 - Input: a permutation σ of $1 \dots n$, s.t. $A[\sigma(i)] = i$
 - Goal: find succ(n)

Proof (Cont.)

- Part II: $O(\sqrt{n})$ is optimal.
 - Our model:
 - Input: a permutation σ of $1 \dots n$, s.t. $A[\sigma(i)] = i$
 - Goal: find succ(n)
 - The optimal deterministic algorithm is a sequence of two types of operations:
 - "Operation A":
 - Pick a visited location $\sigma(i)$
 - Visit one of its neighbours: $T[\sigma(i-1)]$ or $T[\sigma(i+1)]$
 - "Operation B": Visit some unvisited $T[\sigma(i)]$

Proof (Cont.)

Part II: $O(\sqrt{n})$ is optimal.

 Question: On a random input, how likely is it to discover one of the last \sqrt{n} items after a operations "A" and b operations "B"?

Proof (Cont.)

Part II: $O(\sqrt{n})$ is optimal.

• Question: On a random input, how likely is it to discover one of the last \sqrt{n} items after a operations "A" and **b** operations "B"?

Proof (Cont.)

Part II: $O(\sqrt{n})$ is optimal.

• Question: On a random input, how likely is it to discover one of the last \sqrt{n} items after a operations "A" and **b** operations "B"?

• A very crude estimate: $\mathbb{P}(\text{tail item not picked after } (a+b) \text{ ops.}) \ge (1 - \frac{\sqrt{n}+a+b}{n})^{a+b}$

Proof (Cont.)

Part II: $O(\sqrt{n})$ is optimal.

• Question: On a random input, how likely is it to discover one of the last \sqrt{n} items after a operations "A" and **b** operations "B"?

- A very crude estimate: $\mathbb{P}(\text{tail item not picked after } (a+b) \text{ ops.}) \ge (1 - \frac{\sqrt{n}+a+b}{n})^{a+b}$
- Assume the total number of operations before visiting one of the last \sqrt{n} elements in the tail of the list does not exceed \sqrt{n}

Proof (Cont.)

Part II: $O(\sqrt{n})$ is optimal.

• Question: On a random input, how likely is it to discover one of the last \sqrt{n} items after a operations "A" and **b** operations "B"?

 $B \longleftrightarrow B \longleftrightarrow A \longleftrightarrow T \longleftrightarrow T \longleftrightarrow T$

- A very crude estimate: $\mathbb{P}(\text{tail item not picked after } (a+b) \text{ ops.}) \ge (1 - \frac{\sqrt{n}+a+b}{n})^{a+b}$
- Assume the total number of operations before visiting one of the last \sqrt{n} elements in the tail of the list does not exceed \sqrt{n}

• However, we still have:

$$\mathbb{E}(a+b) \ge \sum_{a+b=1}^{\sqrt{n}} (a+b+1) \frac{\sqrt{n}}{n} (1 - \frac{\sqrt{n}+a+b}{n})^{a+b} = \Omega(\sqrt{n})$$

Proof (Cont.)

Part II: $O(\sqrt{n})$ is optimal.

• Question: On a random input, how likely is it to discover one of the last \sqrt{n} items after a operations "A" and **b** operations "B"?

 $B \longleftrightarrow \to B \longleftrightarrow A \longleftrightarrow T \longleftrightarrow T \longleftrightarrow T$

- A very crude estimate: $\mathbb{P}(\text{tail item not picked after } (a+b) \text{ ops.}) \ge (1 - \frac{\sqrt{n}+a+b}{n})^{a+b}$
- Assume the total number of operations before visiting one of the last \sqrt{n} elements in the tail of the list does not exceed \sqrt{n}
- However, we still have: $\mathbb{E}(a+b) \ge \sum_{a+b=1}^{\sqrt{n}} (a+b+1) \frac{\sqrt{n}}{n} (1 - \frac{\sqrt{n}+a+b}{n})^{a+b} = \Omega(\sqrt{n})$
- Once in the tail, the deterministic algorithm can get to the last element in $O(\sqrt{n})$ operations "A"

Proof (Cont.)

Part II: $O(\sqrt{n})$ is optimal.

• Question: On a random input, how likely is it to discover one of the last \sqrt{n} items after a operations "A" and **b** operations "B"?

 $B \longleftrightarrow B \longleftrightarrow A \longleftrightarrow T \longleftrightarrow T \longleftrightarrow T$

- A very crude estimate: $\mathbb{P}(\text{tail item not picked after } (a+b) \text{ ops.}) \ge (1 - \frac{\sqrt{n}+a+b}{n})^{a+b}$
- Assume the total number of operations before visiting one of the last \sqrt{n} elements in the tail of the list does not exceed \sqrt{n}
- However, we still have: $\mathbb{E}(a+b) \ge \sum_{a+b=1}^{\sqrt{n}} (a+b+1) \frac{\sqrt{n}}{n} (1 - \frac{\sqrt{n}+a+b}{n})^{a+b} = \Omega(\sqrt{n})$
- Once in the tail, the deterministic algorithm can get to the last element in $O(\sqrt{n})$ operations "A"
- So the average running time of our optimal deterministic algorithm is $\Omega(\sqrt{n})$

Outline

- 2 1D: Successor searching
- 3 2D: Polygonal intersection
- ④ 3D: Polyhedral intersection
- 5 Applications

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each, determine whether they intersect or not and, if they do, report one point in the intersection.

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each, determine whether they intersect or not and, if they do, report one point in the intersection.

Example:

Intersection: YES

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each, determine whether they intersect or not and, if they do, report one point in the intersection.

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each, determine whether they intersect or not and, if they do, report one point in the intersection.

Again, complexity depends on how polygons are stored:

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each, determine whether they intersect or not and, if they do, report one point in the intersection.

Again, complexity depends on how polygons are stored:

• General case $\rightarrow O(n)$ time (e.g. via Linear Programming, Seidel [1990])

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each, determine whether they intersect or not and, if they do, report one point in the intersection.

Again, complexity depends on how polygons are stored:

- General case $\rightarrow O(n)$ time (e.g. via Linear Programming, Seidel [1990])
- Vertices are stored in a clockwise order in a doubly-linked list (allowing for random sampling) ✓
 → expected O(√n) time (Chazelle et al. [2005])

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each, determine whether they intersect or not and, if they do, report one point in the intersection.

Again, complexity depends on how polygons are stored:

- General case $\rightarrow O(n)$ time (e.g. via Linear Programming, Seidel [1990])
- Vertices are stored in a clockwise order in a doubly-linked list (allowing for random sampling) ✓
 → expected O(√n) time (Chazelle et al. [2005])
- Vertices are stored in an array in cyclic order $\rightarrow O(\log n)$ time (Chazelle and Dobkin [1987])

Detour: Classical geometric data structures

Idea: allow for quick traversal between faces, edges, and vertices due to the explicitly linked structure of the objects.

Detour: Classical geometric data structures

Idea: allow for quick traversal between faces, edges, and vertices due to the explicitly linked structure of the objects.

Doubly connected edge list (DCEL)

- Doubly-linked list of half-edges
- Each half-edge bounds a single face
- Standard data structure in CGAL (www.cgal.org)

Detour: Classical geometric data structures

Idea: allow for quick traversal between faces, edges, and vertices due to the explicitly linked structure of the objects.

Doubly connected edge list (DCEL)

- Doubly-linked list of half-edges
- Each half-edge bounds a single face
- Standard data structure in CGAL (www.cgal.org)

Winged edge

- Also edge-based
- For each edge, stores its vertices, left and right faces etc.

Convex polygonal intersection: Idea of an algorithm

Start with the input polygons

Convex polygonal intersection: Idea of an algorithm

Start with the input polygons

Simplify polygons by sampling. Check if they intersect

Convex polygonal intersection: Idea of an algorithm

Start with the input polygons

Simplify polygons If by sampling. Check if they intersect ove

If not, test the potentially overlapping region

Convex polygonal intersection: Randomized algorithm

Algorithm: Convex polygonal intersection in $O(\sqrt{n})$ time

Input : Two convex polygons P and Q, $|P_{vertices}| = |Q_{vertices}| = n$ **Output**: Report one point in $P \cap Q$ (if they intersect) 1 Sample $S_P \subset P_{\text{vertices}}$, $S_Q \subset Q_{\text{vertices}}$, $|S_P| = |S_Q| = \sqrt{n}$ from P and Q randomly 2 Let $R_P = conv(S_P) \subset P$, $R_Q = conv(S_Q) \subset Q$ // convex hulls (conceptual) // Linear Programming finds $R_P \cap R_O$ without computing convex hulls 3 if $R_P \cap R_Q \neq \emptyset$ then return Intersection point of R_P and R_Q 4 5 end 6 else $\mathcal{L} =$ bi-tangent separating line for R_P and R_Q C_P = part of P to the R_Q side of \mathcal{L} 8 $C_{O} =$ part of Q to the R_{P} side of \mathcal{L} 9 Check R_P and C_O for intersection. If they don't intersect, find a line \mathcal{L}' that 10 separates R_P and C_Q , and compute C'_P , the part of P on the other side of \mathcal{L}' . Test C'_P and C_Q for intersection. If no intersection is found, repeat step 10 for P and Q swapped. 11 12 end

Convex polygonal intersection: Randomized algorithm

Example

Input: Polygons P and Q

Convex polygonal intersection: Randomized algorithm

Example

Simplified versions of P and Q: convex hulls R_P and R_Q of size $O(\sqrt{n})$

Convex polygonal intersection: Randomized algorithm

Example

 $R_P \cap R_Q = \emptyset \implies$ compute bi-tangent separating line L

Convex polygonal intersection: Randomized algorithm

Example

Compute C_Q , the part of Q to the other side of L. Case 1: $R_P \cap C_Q \neq \emptyset \implies$ we are done

Convex polygonal intersection: Randomized algorithm

Example

Case 2: $R_P \cap C_Q = \emptyset$

Convex polygonal intersection: Randomized algorithm

Example

 \implies compute L', the separating line for R_P and C_Q

Convex polygonal intersection: Randomized algorithm

Example

Compute C'_P , the part of P to the other side of L'. Test C'_P and C_Q for intersection

Convex polygonal intersection: Randomized algorithm

Example

Case 1: $C'_P \cap C_Q \neq \emptyset \implies$ we are done Case 2: $C'_P \cap C_Q = \emptyset \implies$ re-run with P and Q exchanged
Convex polygonal intersection: Randomized algorithm

Q. Why don't we design a recursive algorithm instead?

Convex polygonal intersection: Randomized algorithm

 $\underline{\mathbf{Q}}$. Why don't we design a **recursive** algorithm instead? <u>A.</u> Because our model restricts us to **global** sampling only.

Convex polygonal intersection: Randomized algorithm

<u>Q.</u> Why don't we design a **recursive** algorithm instead? <u>A.</u> Because our model restricts us to **global** sampling only.

- We can only sample efficiently in the main problem, but not in subproblems
- So we have to treat our intersection subproblems in a "classical" (linear) way

Theorem

To check whether two convex n-gons intersect can be done in $O(\sqrt{n})$ expected time, which is optimal.

Theorem

To check whether two convex n-gons intersect can be done in $O(\sqrt{n})$ expected time, which is optimal.

Proof

Some intuition:

- For intersection tests at each step we use Linear Programming, which works in O(r) time for inputs of size r
- After sampling \sqrt{n} vertices from each *n*-gon, we have $r = \sqrt{n}$
- If the intersection test for our simplified polygons R_P and R_Q fails, then the subsequent tests involving C_P , C_Q etc. will still process a sublinear number of vertices

Proof (Cont.)

- Part I: Expected time is $O(\sqrt{n})$.
 - Assume we sample r vertices in the first step

Proof (Cont.)

Part I: Expected time is $O(\sqrt{n})$.

- Assume we sample r vertices in the first step
- Running time is $O(r + |C_P| + |C'_P| + |C_Q| + |C'_Q|)$ (follows directly from the algorithm description, assuming we use LP for intersection tests to execute them in linear time)

Proof (Cont.)

Part I: Expected time is $O(\sqrt{n})$.

- Assume we sample r vertices in the first step
- Running time is $O(r + |C_P| + |C'_P| + |C_Q| + |C'_Q|)$ (follows directly from the algorithm description, assuming we use LP for intersection tests to execute them in linear time)
- Key observation: one can show that $\mathbb{E}|C_P| = O(n/r)$; the same is true for $\mathbb{E}|C'_P|$, $\mathbb{E}|C_Q|$ and $\mathbb{E}|C'_Q|$ (see the paper)

Proof (Cont.)

Part I: Expected time is $O(\sqrt{n})$.

- Assume we sample r vertices in the first step
- Running time is $O(r + |C_P| + |C'_P| + |C_Q| + |C'_Q|)$ (follows directly from the algorithm description, assuming we use LP for intersection tests to execute them in linear time)
- Key observation: one can show that $\mathbb{E}|C_P| = O(n/r)$; the same is true for $\mathbb{E}|C'_P|$, $\mathbb{E}|C_Q|$ and $\mathbb{E}|C'_Q|$ (see the paper)

• $\mathbb{E}(\text{Running time})$ becomes O(r + n/r)

< 同 ト < 三 ト

Proof (Cont.)

Part I: Expected time is $O(\sqrt{n})$.

- Assume we sample r vertices in the first step
- Running time is $O(r + |C_P| + |C'_P| + |C_Q| + |C'_Q|)$ (follows directly from the algorithm description, assuming we use LP for intersection tests to execute them in linear time)
- Key observation: one can show that $\mathbb{E}|C_P| = O(n/r)$; the same is true for $\mathbb{E}|C'_P|$, $\mathbb{E}|C_Q|$ and $\mathbb{E}|C'_Q|$ (see the paper)
- $\mathbb{E}(\text{Running time})$ becomes O(r + n/r)

• Setting
$$r = \sqrt{n}$$
 makes it $O(\sqrt{n})$

< /₽ > < E > .

Proof (Cont.)

- Part II: $O(\sqrt{n})$ is optimal.
 - Yao's minimax principle \implies find a difficult distribution:

- Polygons *P* and *Q* lie to the opposite sides of the x-axis
- **P**'s highest vertex is p = (0,0); **Q**'s lowest vertex is $q = (0,\delta)$
- $P \cap Q \neq \emptyset \iff \delta = 0$

Proof (Cont.)

Part II: $O(\sqrt{n})$ is optimal.

- Any algorithm that detects intersection must have access to q to check that it lies in the origin
- The only operations allowed are:
 - random sampling of edges
 - edge-traversing via links
- The same argument as for the successor search problem yields the $\Omega(\sqrt{n})$ bound

Outline

- 2 1D: Successor searching
- 3 2D: Polygonal intersection
- 4 3D: Polyhedral intersection

5 Applications

Problem

Given two n-vertex convex polyhedra P and Q in \mathbb{R}^3 , determine whether they intersect or not and, if they do, report one point in the intersection.

3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in \mathbb{R}^3 , determine whether they intersect or not and, if they do, report one point in the intersection.

Example:

Intersection: NO

3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in \mathbb{R}^3 , determine whether they intersect or not and, if they do, report one point in the intersection.

Problem

Given two n-vertex convex polyhedra P and Q in \mathbb{R}^3 , determine whether they intersect or not and, if they do, report one point in the intersection.

Problem complexity depends on the underlying data structures:

Problem

Given two n-vertex convex polyhedra P and Q in \mathbb{R}^3 , determine whether they intersect or not and, if they do, report one point in the intersection.

Problem complexity depends on the underlying data structures:

Problem

Given two n-vertex convex polyhedra P and Q in \mathbb{R}^3 , determine whether they intersect or not and, if they do, report one point in the intersection.

Problem complexity depends on the underlying data structures:

② Linked lists for edges/vertices/faces, no preprocessing \checkmark → expected $O(\sqrt{n})$ time (Chazelle et al. [2005])

Problem

Given two n-vertex convex polyhedra P and Q in \mathbb{R}^3 , determine whether they intersect or not and, if they do, report one point in the intersection.

Problem complexity depends on the underlying data structures:

- ② Linked lists for edges/vertices/faces, no preprocessing \checkmark → expected $O(\sqrt{n})$ time (Chazelle et al. [2005])
- P and Q have been preprocessed in O(n) $\rightarrow O(\log n)$ time per query (Dobkin and Kirkpatrick [1990])

Convex polyhedral intersection: Idea of an algorithm

We can design an algorithm of the same structure as in 2D!

Convex polyhedral intersection: Idea of an algorithm

We can design an algorithm of the same structure as in 2D!

However, as we are now in 3D:

- We will compute a separating plane $\mathcal L$ instead of a separating line in the case there is no intersection
- Pieces cut off by $\mathcal L$ will be convex polyhedra, not polygons

Convex polyhedral intersection: Idea of an algorithm

We can design an algorithm of the same structure as in 2D!

However, as we are now in 3D:

- We will compute a separating plane $\mathcal L$ instead of a separating line in the case there is no intersection
- Pieces cut off by $\mathcal L$ will be convex polyhedra, not polygons

Implementation requires solving some additional technical issues... (see the paper)

Convex polyhedral intersection: Randomized algorithm

Example

Simplify polyhedra P and Qusing $O(\sqrt{n})$ randomly sampled vertices

Convex polyhedral intersection: Randomized algorithm

Example

Test intersection of samples $(R_P \text{ and } R_Q)$ via LP. If they don't intersect, compute a separating plane L

Convex polyhedral intersection: Randomized algorithm

Example

Compute the part of P lying to the other side of L. Test for intersection with R_Q

Convex polyhedral intersection: Randomized algorithm

Example

If again no intersection is found, update the separating plane to L'

Convex polyhedral intersection: Randomized algorithm

Example

Compute the part of Q lying to the other side of L'. If still no intersection, swap P and Q and repeat.

Outline

Context

- 2 1D: Successor searching
- 3 2D: Polygonal intersection
- ④ 3D: Polyhedral intersection

Ray shooting (casting)

Ray shooting (ray casting): the problem of ray-surface intersection detection with. Some computer graphics applications:

- Determining the first object intersected by a ray
- Hidden surface removal
- Ray tracing rendering

Ray shooting (casting)

Ray shooting (ray casting): the problem of ray-surface intersection detection with. Some computer graphics applications:

- Determining the first object intersected by a ray
- Hidden surface removal
- Ray tracing rendering

Can reuse the same algorithm!

- Rays are "very skinny" polyhedra
- We need only one intersection point

ightarrow Can compute ray-surface intersections in expected $O(\sqrt{n})$ time

Point location in Delaunay triangulations

Relationship between Delaunay triangulations and convex hulls:

Project onto paraboloid $(x, y, x^2 + y^2)$

Compute convex hull

Project lower hull faces back to the plane

Point location in Delaunay triangulations

Relationship between Delaunay triangulations and convex hulls:

Point location in a Delaunay triangulation is equivalent to:

- Lifting the points to the paraboloid
- Shooting a ray towards their lower convex hull
- ightarrow can again be done in expected $O(\sqrt{n})$ time

Point location in Delaunay triangulations

Relationship between Delaunay triangulations and convex hulls:

Point location in a Delaunay triangulation is equivalent to:

- Lifting the points to the paraboloid
- Shooting a ray towards their lower convex hull
- ightarrow can again be done in expected $O(\sqrt{n})$ time

Similar construction works for Voronoi diagrams

References |

- B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions. J. ACM, 34(1):1-27, January 1987. ISSN 0004-5411. doi: 10.1145/7531.24036. URL http://doi.acm.org/10.1145/7531.24036.
- Bernard Chazelle, Ding Liu, and Avner Magen. Sublinear geometric algorithms. In Artur Czumaj, S. Muthu Muthukrishnan, Ronitt Rubinfeld, and Christian Sohler, editors, *Sublinear Algorithms*, volume 05291 of *Dagstuhl Seminar Proceedings*. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005. URL http://dblp.uni-trier.de/db/conf/dagstuhl/P5291. html#ChazelleLM05.

< /i>

References II

- David P. Dobkin and David G. Kirkpatrick. Determining the separation of preprocessed polyhedra: A unified approach. In Proceedings of the Seventeenth International Colloquium on Automata, Languages and Programming, pages 400-413, New York, NY, USA, 1990. Springer-Verlag New York, Inc. ISBN 0-387-52826-1. URL
 - http://dl.acm.org/citation.cfm?id=90397.91344.
- Raimund Seidel. Linear programming and convex hulls made easy.
 In Proceedings of the Sixth Annual Symposium on Computational Geometry, SCG '90, pages 211-215, New York, NY, USA, 1990.
 ACM. ISBN 0-89791-362-0. doi: 10.1145/98524.98570. URL http://doi.acm.org/10.1145/98524.98570.