
Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Sublinear Geometric Algorithms
Successor search. Polygonal and polyhedral intersections

Mikhail Dubov

March 22, 2016

1 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Outline

1 Context

2 1D: Successor searching

3 2D: Polygonal intersection

4 3D: Polyhedral intersection

5 Applications

2 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Outline

1 Context

2 1D: Successor searching

3 2D: Polygonal intersection

4 3D: Polyhedral intersection

5 Applications

3 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Geometric algorithms

70's-90's: Classical computational geometry algorithms
→ Convex hulls
→ Voronoi diagrams
→ Delaunay trianguations
→ Linear programming

00's: Research on sublinear algorithms

Motivation: Availability of massive geometric datasets

Problem: Impossible to examine more than a fraction of the

input

4 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Geometric algorithms

70's-90's: Classical computational geometry algorithms
→ Convex hulls
→ Voronoi diagrams
→ Delaunay trianguations
→ Linear programming

00's: Research on sublinear algorithms

Motivation: Availability of massive geometric datasets

Problem: Impossible to examine more than a fraction of the

input

4 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Sublinear geometric algorithms

Two main approaches to achieve sublinearity:

Data preprocessing

Look at the whole data once, make

the subsequent queries fast
Example: Point location in Rk

One can build a kd-tree in O(n)
Nearest neighbor search: O(log n)
per query on average

Randomization

Look only at a portion of the data
Example: Point location in
Delaunay triangulations (stay tuned)

Expected O(
√
n) time per query

without preprocessing

5 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Sublinear geometric algorithms

Two main approaches to achieve sublinearity:

Data preprocessing

Look at the whole data once, make

the subsequent queries fast
Example: Point location in Rk

One can build a kd-tree in O(n)
Nearest neighbor search: O(log n)
per query on average

Randomization

Look only at a portion of the data
Example: Point location in
Delaunay triangulations (stay tuned)

Expected O(
√
n) time per query

without preprocessing

5 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Sublinear geometric algorithms

Two main approaches to achieve sublinearity:

Data preprocessing

Look at the whole data once, make

the subsequent queries fast
Example: Point location in Rk

One can build a kd-tree in O(n)
Nearest neighbor search: O(log n)
per query on average

Randomization

Look only at a portion of the data
Example: Point location in
Delaunay triangulations (stay tuned)

Expected O(
√
n) time per query

without preprocessing

5 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Randomized algorithms

Two main types of randomized algorithms:

Monte Carlo algorithms:

Running time is bounded

P(Results are correct) < 1

Ex.: Miller-Rabin primality test

Las Vegas algorithms:

E(Running time) is bounded

Results are always correct

Ex.: Randomized QuickSort

3 12 31 34 38 62 97

Random pivot selection =⇒ O(n2) time very unlikely

→ Monte Carlo algorithms sometimes give wrong answers
→ Las Vegas algorithms sometimes run for a very long time

6 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Randomized algorithms

Two main types of randomized algorithms:

Monte Carlo algorithms:

Running time is bounded

P(Results are correct) < 1

Ex.: Miller-Rabin primality test

Las Vegas algorithms:

E(Running time) is bounded

Results are always correct

Ex.: Randomized QuickSort

3 12 31 34 38 62 97

Random pivot selection =⇒ O(n2) time very unlikely

→ Monte Carlo algorithms sometimes give wrong answers
→ Las Vegas algorithms sometimes run for a very long time

6 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Randomized algorithms

Two main types of randomized algorithms:

Monte Carlo algorithms:

Running time is bounded

P(Results are correct) < 1

Ex.: Miller-Rabin primality test

Las Vegas algorithms:

E(Running time) is bounded

Results are always correct

Ex.: Randomized QuickSort

3 12 31 34 38 62 97

Random pivot selection =⇒ O(n2) time very unlikely

→ Monte Carlo algorithms sometimes give wrong answers
→ Las Vegas algorithms sometimes run for a very long time

6 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Randomized algorithms

Two main types of randomized algorithms:

Monte Carlo algorithms:

Running time is bounded

P(Results are correct) < 1

Ex.: Miller-Rabin primality test

Las Vegas algorithms:

E(Running time) is bounded

Results are always correct

Ex.: Randomized QuickSort

3 12 31 34 38 62 97

Random pivot selection =⇒ O(n2) time very unlikely

→ Monte Carlo algorithms sometimes give wrong answers
→ Las Vegas algorithms sometimes run for a very long time

6 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Randomized algorithms

Two main types of randomized algorithms:

Monte Carlo algorithms:

Running time is bounded

P(Results are correct) < 1

Ex.: Miller-Rabin primality test

Las Vegas algorithms:

E(Running time) is bounded

Results are always correct

Ex.: Randomized QuickSort

3 12 31 34 38 62 97

Random pivot selection =⇒ O(n2) time very unlikely

→ Monte Carlo algorithms sometimes give wrong answers
→ Las Vegas algorithms sometimes run for a very long time

6 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Context: Randomized algorithms

Two main types of randomized algorithms:

Monte Carlo algorithms:

Running time is bounded

P(Results are correct) < 1

Ex.: Miller-Rabin primality test

Las Vegas algorithms:

E(Running time) is bounded

Results are always correct

Ex.: Randomized QuickSort

3 12 31 34 38 62 97

Random pivot selection =⇒ O(n2) time very unlikely

→ Monte Carlo algorithms sometimes give wrong answers
→ Las Vegas algorithms sometimes run for a very long time

6 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Our focus

In what follows, we will cover several

randomized Las Vegas algorithms

with no extra preprocessing

having E(Running time) = O(
√
n).

3 8 12

1D: Sucessor search 2D: Polygonal
intersection

3D: Polyhedral
intersection

Credit for images: Chazelle et al.

7 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Our focus

In what follows, we will cover several

randomized Las Vegas algorithms

with no extra preprocessing

having E(Running time) = O(
√
n).

3 8 12

1D: Sucessor search 2D: Polygonal
intersection

3D: Polyhedral
intersection

Credit for images: Chazelle et al.

7 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Our focus

In what follows, we will cover several

randomized Las Vegas algorithms

with no extra preprocessing

having E(Running time) = O(
√
n).

3 8 12

1D: Sucessor search 2D: Polygonal
intersection

3D: Polyhedral
intersection

Credit for images: Chazelle et al.

7 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Our focus

In what follows, we will cover several

randomized Las Vegas algorithms

with no extra preprocessing

having E(Running time) = O(
√
n).

3 8 12

1D: Sucessor search 2D: Polygonal
intersection

3D: Polyhedral
intersection

Credit for images: Chazelle et al.

7 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Outline

1 Context

2 1D: Successor searching

3 2D: Polygonal intersection

4 3D: Polyhedral intersection

5 Applications

8 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

1D: Successor searching

Problem

Given a sorted doubly-linked list of n keys and a number x , �nd the

smallest key y ≥ x (the successor of x).

Example:

3 8 12 31 34 38 62 97

succ(50) = 62
succ(12) = 12

9 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

1D: Successor searching

Problem

Given a sorted doubly-linked list of n keys and a number x , �nd the

smallest key y ≥ x (the successor of x).

Example:

3 8 12 31 34 38 62 97

succ(50) = 62
succ(12) = 12

9 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

1D: Successor searching

Problem

Given a sorted doubly-linked list of n keys and a number x , �nd the

smallest key y ≥ x (the successor of x).

Complexity depends on how the list is stored:

1 The location of elements is unknown

3 12 31 34 38 62 97

→ O(n) time, o(n) impossible

2 List elements are stored in consecutive locations

34 97 12 3 38 31 62

→ expected O(
√
n) time (Chazelle et al. [2005])

3 Elements are consecutive and ordered

3 12 31 34 38 62 97

→ O(log n) time (binary search)

10 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

1D: Successor searching

Problem

Given a sorted doubly-linked list of n keys and a number x , �nd the

smallest key y ≥ x (the successor of x).

Complexity depends on how the list is stored:

1 The location of elements is unknown

3 12 31 34 38 62 97

→ O(n) time, o(n) impossible

2 List elements are stored in consecutive locations

34 97 12 3 38 31 62

→ expected O(
√
n) time (Chazelle et al. [2005])

3 Elements are consecutive and ordered

3 12 31 34 38 62 97

→ O(log n) time (binary search)

10 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

1D: Successor searching

Problem

Given a sorted doubly-linked list of n keys and a number x , �nd the

smallest key y ≥ x (the successor of x).

Complexity depends on how the list is stored:

1 The location of elements is unknown

3 12 31 34 38 62 97

→ O(n) time, o(n) impossible

2 List elements are stored in consecutive locations

34 97 12 3 38 31 62

→ expected O(
√
n) time (Chazelle et al. [2005])

3 Elements are consecutive and ordered

3 12 31 34 38 62 97

→ O(log n) time (binary search)

10 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

1D: Successor searching

Problem

Given a sorted doubly-linked list of n keys and a number x , �nd the

smallest key y ≥ x (the successor of x).

Complexity depends on how the list is stored:

1 The location of elements is unknown

3 12 31 34 38 62 97

→ O(n) time, o(n) impossible

2 List elements are stored in consecutive locations

34 97 12 3 38 31 62

→ expected O(
√
n) time (Chazelle et al. [2005])

3 Elements are consecutive and ordered

3 12 31 34 38 62 97

→ O(log n) time (binary search)

10 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

1D: Successor searching

Problem

Given a sorted doubly-linked list of n keys and a number x , �nd the

smallest key y ≥ x (the successor of x).

Complexity depends on how the list is stored:

1 The location of elements is unknown

3 12 31 34 38 62 97

→ O(n) time, o(n) impossible

2 List elements are stored in consecutive locations

34 97 12 3 38 31 62

→ expected O(
√
n) time (Chazelle et al. [2005])

3 Elements are consecutive and ordered

3 12 31 34 38 62 97

→ O(log n) time (binary search)

10 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Idea of an algorithm

succ(50) =?

3 8 12 31 34 38 62 97

Sample some elements from the list:

3 8 12 31 34 38 62 97

Find the elements in the sample that surround our target:

3 8 12 31 34 38 62 97

Traverse the sublist and �nd the successor:

3 8 12 31 34 38 62 97

11 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Idea of an algorithm

succ(50) =?

3 8 12 31 34 38 62 97

Sample some elements from the list:

3 8 12 31 34 38 62 97

Find the elements in the sample that surround our target:

3 8 12 31 34 38 62 97

Traverse the sublist and �nd the successor:

3 8 12 31 34 38 62 97

11 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Idea of an algorithm

succ(50) =?

3 8 12 31 34 38 62 97

Sample some elements from the list:

3 8 12 31 34 38 62 97

Find the elements in the sample that surround our target:

3 8 12 31 34 38 62 97

Traverse the sublist and �nd the successor:

3 8 12 31 34 38 62 97

11 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Idea of an algorithm

succ(50) =?

3 8 12 31 34 38 62 97

Sample some elements from the list:

3 8 12 31 34 38 62 97

Find the elements in the sample that surround our target:

3 8 12 31 34 38 62 97

Traverse the sublist and �nd the successor:

3 8 12 31 34 38 62 97

11 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Randomized algorithm

Algorithm: Randomized successor searching in O(
√
n) time

Input : Doubly-linked list A = A[1] . . .A[n] of n numbers stored in
an array (table); number x

Output: The smallest number y ∈ A s.t. y ≥ x (if exists)
1 Sample S ⊂ A, |S | =

√
n, from A uniformly at random

2 p = argmaxi=1...
√
n S [i] s.t. S [i] ≤ x // predecessor in S

3 q = argmini=1...
√
n S [i] s.t. S [i] ≥ x // successor in S

4 s = argmini=p...s A[i] s.t. A[i] ≥ x // traverse A from p

5 return A[s]

Note: p and q may not exist

Elements should be:

consecutive for e�cient sampling in step 1

doubly-connected for list traversal in step 4

12 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Randomized algorithm

Algorithm: Randomized successor searching in O(
√
n) time

Input : Doubly-linked list A = A[1] . . .A[n] of n numbers stored in
an array (table); number x

Output: The smallest number y ∈ A s.t. y ≥ x (if exists)
1 Sample S ⊂ A, |S | =

√
n, from A uniformly at random

2 p = argmaxi=1...
√
n S [i] s.t. S [i] ≤ x // predecessor in S

3 q = argmini=1...
√
n S [i] s.t. S [i] ≥ x // successor in S

4 s = argmini=p...s A[i] s.t. A[i] ≥ x // traverse A from p

5 return A[s]

Note: p and q may not exist

Elements should be:

consecutive for e�cient sampling in step 1

doubly-connected for list traversal in step 4

12 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Theorem

Successor searching can be done in O(
√
n) expected time per

query, which is optimal.

Proof

Some intuition:

Our sample S is a subset of
√
n elements from A, |A| = n

We locate p and q in our sample in O(|S |) = O(
√
n) time

The expected distance between these two elements is
|A|/|S | = n/

√
n =
√
n

So traversing A[p] . . .A[q] takes O(
√
n) expected time

13 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Theorem

Successor searching can be done in O(
√
n) expected time per

query, which is optimal.

Proof

Some intuition:

Our sample S is a subset of
√
n elements from A, |A| = n

We locate p and q in our sample in O(|S |) = O(
√
n) time

The expected distance between these two elements is
|A|/|S | = n/

√
n =
√
n

So traversing A[p] . . .A[q] takes O(
√
n) expected time

13 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Let A[s] be the desired successor

Let S [k] be the nearest element to A among those in S

Event Qd : we don't hit any of A[s − d] . . .A[s + d] after
taking

√
n random samples

P(dist(A[s], S [k]) = d) = P(Qd−1)− P(Qd)

E(dist(A[s], S [k]) =
∑
i≥1

i · (P(Qi−1)− P(Qi)) =
∑
i≥0

P(Qi)

≤
√
n
∑
c≥0

P(Qc
√
n) ≤

√
n
∑
c≥0

(1− c/
√
n)
√
n

≤
√
n
∑
c≥0

e−c = O(
√
n)

14 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Let A[s] be the desired successor

Let S [k] be the nearest element to A among those in S

Event Qd : we don't hit any of A[s − d] . . .A[s + d] after
taking

√
n random samples

P(dist(A[s], S [k]) = d) = P(Qd−1)− P(Qd)

E(dist(A[s], S [k]) =
∑
i≥1

i · (P(Qi−1)− P(Qi)) =
∑
i≥0

P(Qi)

≤
√
n
∑
c≥0

P(Qc
√
n) ≤

√
n
∑
c≥0

(1− c/
√
n)
√
n

≤
√
n
∑
c≥0

e−c = O(
√
n)

14 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Let A[s] be the desired successor

Let S [k] be the nearest element to A among those in S

Event Qd : we don't hit any of A[s − d] . . .A[s + d] after
taking

√
n random samples

P(dist(A[s], S [k]) = d) = P(Qd−1)− P(Qd)

E(dist(A[s], S [k]) =
∑
i≥1

i · (P(Qi−1)− P(Qi)) =
∑
i≥0

P(Qi)

≤
√
n
∑
c≥0

P(Qc
√
n) ≤

√
n
∑
c≥0

(1− c/
√
n)
√
n

≤
√
n
∑
c≥0

e−c = O(
√
n)

14 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Let A[s] be the desired successor

Let S [k] be the nearest element to A among those in S

Event Qd : we don't hit any of A[s − d] . . .A[s + d] after
taking

√
n random samples

P(dist(A[s], S [k]) = d) = P(Qd−1)− P(Qd)

E(dist(A[s], S [k]) =
∑
i≥1

i · (P(Qi−1)− P(Qi)) =
∑
i≥0

P(Qi)

≤
√
n
∑
c≥0

P(Qc
√
n) ≤

√
n
∑
c≥0

(1− c/
√
n)
√
n

≤
√
n
∑
c≥0

e−c = O(
√
n)

14 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Let A[s] be the desired successor

Let S [k] be the nearest element to A among those in S

Event Qd : we don't hit any of A[s − d] . . .A[s + d] after
taking

√
n random samples

P(dist(A[s], S [k]) = d) = P(Qd−1)− P(Qd)

E(dist(A[s], S [k]) =
∑
i≥1

i · (P(Qi−1)− P(Qi)) =
∑
i≥0

P(Qi)

≤
√
n
∑
c≥0

P(Qc
√
n) ≤

√
n
∑
c≥0

(1− c/
√
n)
√
n

≤
√
n
∑
c≥0

e−c = O(
√
n)

14 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Yao's minimax principle:

E(Running time of the optimal Las Vegas

randomized algorithm)

≥
E(Running time of an optimal

deterministic algorithm

for any �xed input distribution)

Study the distribution of di�cult inputs

Show that no deterministic algorithm can perform well on it

15 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Our model:

Input: a permutation σ of 1 . . . n, s.t. A[σ(i)] = i
Goal: �nd succ(n)

The optimal deterministic algorithm is a sequence of two types
of operations:

�Operation A�:

Pick a visited location σ(i)
Visit one of its neighbours: T [σ(i − 1)] or T [σ(i + 1)]

�Operation B�: Visit some unvisited T [σ(i)]

16 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Our model:

Input: a permutation σ of 1 . . . n, s.t. A[σ(i)] = i
Goal: �nd succ(n)

The optimal deterministic algorithm is a sequence of two types
of operations:

�Operation A�:

Pick a visited location σ(i)
Visit one of its neighbours: T [σ(i − 1)] or T [σ(i + 1)]

�Operation B�: Visit some unvisited T [σ(i)]

16 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Question: On a random input, how likely is it to discover one of
the last

√
n items after a operations �A� and b operations �B�?

B B A T T T

A very crude estimate:

P(tail item not picked after (a+b) ops.) ≥ (1−
√
n+a+b
n)a+b

Assume the total number of operations before visiting one of the
last
√
n elements in the tail of the list does not exceed

√
n

However, we still have:
E(a + b) ≥

∑√n
a+b=1(a + b + 1)

√
n
n (1−

√
n+a+b
n)a+b = Ω(

√
n)

Once in the tail, the deterministic algorithm can get to the last
element in O(

√
n) operations �A�

So the average running time of our optimal deterministic
algorithm is Ω(

√
n)

17 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Question: On a random input, how likely is it to discover one of
the last

√
n items after a operations �A� and b operations �B�?

B B A T T T

A very crude estimate:

P(tail item not picked after (a+b) ops.) ≥ (1−
√
n+a+b
n)a+b

Assume the total number of operations before visiting one of the
last
√
n elements in the tail of the list does not exceed

√
n

However, we still have:
E(a + b) ≥

∑√n
a+b=1(a + b + 1)

√
n
n (1−

√
n+a+b
n)a+b = Ω(

√
n)

Once in the tail, the deterministic algorithm can get to the last
element in O(

√
n) operations �A�

So the average running time of our optimal deterministic
algorithm is Ω(

√
n)

17 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Question: On a random input, how likely is it to discover one of
the last

√
n items after a operations �A� and b operations �B�?

B B A T T T

A very crude estimate:

P(tail item not picked after (a+b) ops.) ≥ (1−
√
n+a+b
n)a+b

Assume the total number of operations before visiting one of the
last
√
n elements in the tail of the list does not exceed

√
n

However, we still have:
E(a + b) ≥

∑√n
a+b=1(a + b + 1)

√
n
n (1−

√
n+a+b
n)a+b = Ω(

√
n)

Once in the tail, the deterministic algorithm can get to the last
element in O(

√
n) operations �A�

So the average running time of our optimal deterministic
algorithm is Ω(

√
n)

17 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Question: On a random input, how likely is it to discover one of
the last

√
n items after a operations �A� and b operations �B�?

B B A T T T

A very crude estimate:

P(tail item not picked after (a+b) ops.) ≥ (1−
√
n+a+b
n)a+b

Assume the total number of operations before visiting one of the
last
√
n elements in the tail of the list does not exceed

√
n

However, we still have:
E(a + b) ≥

∑√n
a+b=1(a + b + 1)

√
n
n (1−

√
n+a+b
n)a+b = Ω(

√
n)

Once in the tail, the deterministic algorithm can get to the last
element in O(

√
n) operations �A�

So the average running time of our optimal deterministic
algorithm is Ω(

√
n)

17 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Question: On a random input, how likely is it to discover one of
the last

√
n items after a operations �A� and b operations �B�?

B B A T T T

A very crude estimate:

P(tail item not picked after (a+b) ops.) ≥ (1−
√
n+a+b
n)a+b

Assume the total number of operations before visiting one of the
last
√
n elements in the tail of the list does not exceed

√
n

However, we still have:
E(a + b) ≥

∑√n
a+b=1(a + b + 1)

√
n
n (1−

√
n+a+b
n)a+b = Ω(

√
n)

Once in the tail, the deterministic algorithm can get to the last
element in O(

√
n) operations �A�

So the average running time of our optimal deterministic
algorithm is Ω(

√
n)

17 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Question: On a random input, how likely is it to discover one of
the last

√
n items after a operations �A� and b operations �B�?

B B A T T T

A very crude estimate:

P(tail item not picked after (a+b) ops.) ≥ (1−
√
n+a+b
n)a+b

Assume the total number of operations before visiting one of the
last
√
n elements in the tail of the list does not exceed

√
n

However, we still have:
E(a + b) ≥

∑√n
a+b=1(a + b + 1)

√
n
n (1−

√
n+a+b
n)a+b = Ω(

√
n)

Once in the tail, the deterministic algorithm can get to the last
element in O(

√
n) operations �A�

So the average running time of our optimal deterministic
algorithm is Ω(

√
n)

17 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Question: On a random input, how likely is it to discover one of
the last

√
n items after a operations �A� and b operations �B�?

B B A T T T

A very crude estimate:

P(tail item not picked after (a+b) ops.) ≥ (1−
√
n+a+b
n)a+b

Assume the total number of operations before visiting one of the
last
√
n elements in the tail of the list does not exceed

√
n

However, we still have:
E(a + b) ≥

∑√n
a+b=1(a + b + 1)

√
n
n (1−

√
n+a+b
n)a+b = Ω(

√
n)

Once in the tail, the deterministic algorithm can get to the last
element in O(

√
n) operations �A�

So the average running time of our optimal deterministic
algorithm is Ω(

√
n)

17 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Outline

1 Context

2 1D: Successor searching

3 2D: Polygonal intersection

4 3D: Polyhedral intersection

5 Applications

18 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each,

determine whether they intersect or not and, if they do, report one

point in the intersection.

Example:

Intersection: YES

19 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each,

determine whether they intersect or not and, if they do, report one

point in the intersection.

Example:

Intersection: YES

19 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each,

determine whether they intersect or not and, if they do, report one

point in the intersection.

Again, complexity depends on how polygons are stored:

1 General case
→ O(n) time (e.g. via Linear Programming, Seidel [1990])

2 Vertices are stored in a clockwise order in a
doubly-linked list (allowing for random sampling)
→ expected O(

√
n) time (Chazelle et al. [2005])

3 Vertices are stored in an array in cyclic order
→ O(log n) time (Chazelle and Dobkin [1987])

20 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each,

determine whether they intersect or not and, if they do, report one

point in the intersection.

Again, complexity depends on how polygons are stored:

1 General case
→ O(n) time (e.g. via Linear Programming, Seidel [1990])

2 Vertices are stored in a clockwise order in a
doubly-linked list (allowing for random sampling)
→ expected O(

√
n) time (Chazelle et al. [2005])

3 Vertices are stored in an array in cyclic order
→ O(log n) time (Chazelle and Dobkin [1987])

20 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each,

determine whether they intersect or not and, if they do, report one

point in the intersection.

Again, complexity depends on how polygons are stored:

1 General case
→ O(n) time (e.g. via Linear Programming, Seidel [1990])

2 Vertices are stored in a clockwise order in a
doubly-linked list (allowing for random sampling)
→ expected O(

√
n) time (Chazelle et al. [2005])

3 Vertices are stored in an array in cyclic order
→ O(log n) time (Chazelle and Dobkin [1987])

20 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each,

determine whether they intersect or not and, if they do, report one

point in the intersection.

Again, complexity depends on how polygons are stored:

1 General case
→ O(n) time (e.g. via Linear Programming, Seidel [1990])

2 Vertices are stored in a clockwise order in a
doubly-linked list (allowing for random sampling)
→ expected O(

√
n) time (Chazelle et al. [2005])

3 Vertices are stored in an array in cyclic order
→ O(log n) time (Chazelle and Dobkin [1987])

20 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each,

determine whether they intersect or not and, if they do, report one

point in the intersection.

Again, complexity depends on how polygons are stored:

1 General case
→ O(n) time (e.g. via Linear Programming, Seidel [1990])

2 Vertices are stored in a clockwise order in a
doubly-linked list (allowing for random sampling)
→ expected O(

√
n) time (Chazelle et al. [2005])

3 Vertices are stored in an array in cyclic order
→ O(log n) time (Chazelle and Dobkin [1987])

20 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Detour: Classical geometric data structures

Idea: allow for quick traversal between faces, edges, and vertices
due to the explicitly linked structure of the objects.

Doubly connected edge list (DCEL)

Doubly-linked list of half-edges

Each half-edge bounds a single face

Standard data structure in CGAL
(www.cgal.org)

Winged edge

Also edge-based

For each edge, stores its vertices, left
and right faces etc.

21 / 50 Mikhail Dubov Sublinear Geometric Algorithms

www.cgal.org

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Detour: Classical geometric data structures

Idea: allow for quick traversal between faces, edges, and vertices
due to the explicitly linked structure of the objects.

Doubly connected edge list (DCEL)

Doubly-linked list of half-edges

Each half-edge bounds a single face

Standard data structure in CGAL
(www.cgal.org)

Winged edge

Also edge-based

For each edge, stores its vertices, left
and right faces etc.

21 / 50 Mikhail Dubov Sublinear Geometric Algorithms

www.cgal.org

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Detour: Classical geometric data structures

Idea: allow for quick traversal between faces, edges, and vertices
due to the explicitly linked structure of the objects.

Doubly connected edge list (DCEL)

Doubly-linked list of half-edges

Each half-edge bounds a single face

Standard data structure in CGAL
(www.cgal.org)

Winged edge

Also edge-based

For each edge, stores its vertices, left
and right faces etc.

21 / 50 Mikhail Dubov Sublinear Geometric Algorithms

www.cgal.org

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Idea of an algorithm

Start with the
input polygons

Simplify polygons
by sampling. Check
if they intersect

If not, test the
potentially

overlapping region

22 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Idea of an algorithm

Start with the
input polygons

Simplify polygons
by sampling. Check
if they intersect

If not, test the
potentially

overlapping region

22 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Idea of an algorithm

Start with the
input polygons

Simplify polygons
by sampling. Check
if they intersect

If not, test the
potentially

overlapping region

22 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Algorithm: Convex polygonal intersection in O(
√
n) time

Input : Two convex polygons P and Q, |Pvertices| = |Qvertices| = n
Output: Report one point in P ∩ Q (if they intersect)

1 Sample SP ⊂ Pvertices, SQ ⊂ Qvertices, |SP | = |SQ | =
√
n from P and Q randomly

2 Let RP = conv(SP) ⊂ P , RQ = conv(SQ) ⊂ Q // convex hulls (conceptual)

// Linear Programming finds RP ∩ RQ without computing convex hulls

3 if RP ∩ RQ 6= ∅ then
4 return Intersection point of RP and RQ

5 end
6 else
7 L = bi-tangent separating line for RP and RQ

8 CP = part of P to the RQ side of L
9 CQ = part of Q to the RP side of L

10 Check RP and CQ for intersection. If they don't intersect, �nd a line L′ that
separates RP and CQ , and compute C ′P , the part of P on the other side of L′.
Test C ′P and CQ for intersection.

11 If no intersection is found, repeat step 10 for P and Q swapped.

12 end

23 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Example

Input: Polygons P and Q

24 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Example

Simpli�ed versions of P and Q:
convex hulls RP and RQ of size O(

√
n)

25 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Example

RP ∩ RQ = ∅ =⇒ compute bi-tangent separating line L

26 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Example

Compute CQ , the part of Q to the other side of L.
Case 1: RP ∩ CQ 6= ∅ =⇒ we are done

27 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Example

Case 2: RP ∩ CQ = ∅

28 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Example

=⇒ compute L′, the separating line for RP and CQ

29 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Example

Compute C ′P , the part of P to the other side of L′.
Test C ′P and CQ for intersection

30 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Example

Case 1: C ′P ∩ CQ 6= ∅ =⇒ we are done
Case 2: C ′P ∩ CQ = ∅ =⇒ re-run with P and Q exchanged

31 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Q. Why don't we design a recursive algorithm instead?

A. Because our model restricts us to global sampling only.

We can only sample e�ciently in the main problem, but not in
subproblems

So we have to treat our intersection subproblems in a
�classical� (linear) way

32 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Q. Why don't we design a recursive algorithm instead?
A. Because our model restricts us to global sampling only.

We can only sample e�ciently in the main problem, but not in
subproblems

So we have to treat our intersection subproblems in a
�classical� (linear) way

32 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Randomized algorithm

Q. Why don't we design a recursive algorithm instead?
A. Because our model restricts us to global sampling only.

We can only sample e�ciently in the main problem, but not in
subproblems

So we have to treat our intersection subproblems in a
�classical� (linear) way

32 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Analysis

Theorem

To check whether two convex n-gons intersect can be done in

O(
√
n) expected time, which is optimal.

Proof

Some intuition:

For intersection tests at each step we use Linear Programming,
which works in O(r) time for inputs of size r

After sampling
√
n vertices from each n-gon, we have r =

√
n

If the intersection test for our simpli�ed polygons RP and RQ

fails, then the subsequent tests involving CP , CQ etc. will still
process a sublinear number of vertices

33 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Analysis

Theorem

To check whether two convex n-gons intersect can be done in

O(
√
n) expected time, which is optimal.

Proof

Some intuition:

For intersection tests at each step we use Linear Programming,
which works in O(r) time for inputs of size r

After sampling
√
n vertices from each n-gon, we have r =

√
n

If the intersection test for our simpli�ed polygons RP and RQ

fails, then the subsequent tests involving CP , CQ etc. will still
process a sublinear number of vertices

33 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Assume we sample r vertices in the �rst step

Running time is O(r + |CP |+ |C ′P |+ |CQ |+ |C ′Q |) (follows
directly from the algorithm description, assuming we use LP
for intersection tests to execute them in linear time)

Key observation: one can show that E|CP | = O(n/r); the
same is true for E|C ′P |, E|CQ | and E|C ′Q | (see the paper)

E(Running time) becomes O(r + n/r)

Setting r =
√
n makes it O(

√
n)

34 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Assume we sample r vertices in the �rst step

Running time is O(r + |CP |+ |C ′P |+ |CQ |+ |C ′Q |) (follows
directly from the algorithm description, assuming we use LP
for intersection tests to execute them in linear time)

Key observation: one can show that E|CP | = O(n/r); the
same is true for E|C ′P |, E|CQ | and E|C ′Q | (see the paper)

E(Running time) becomes O(r + n/r)

Setting r =
√
n makes it O(

√
n)

34 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Assume we sample r vertices in the �rst step

Running time is O(r + |CP |+ |C ′P |+ |CQ |+ |C ′Q |) (follows
directly from the algorithm description, assuming we use LP
for intersection tests to execute them in linear time)

Key observation: one can show that E|CP | = O(n/r); the
same is true for E|C ′P |, E|CQ | and E|C ′Q | (see the paper)

E(Running time) becomes O(r + n/r)

Setting r =
√
n makes it O(

√
n)

34 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Assume we sample r vertices in the �rst step

Running time is O(r + |CP |+ |C ′P |+ |CQ |+ |C ′Q |) (follows
directly from the algorithm description, assuming we use LP
for intersection tests to execute them in linear time)

Key observation: one can show that E|CP | = O(n/r); the
same is true for E|C ′P |, E|CQ | and E|C ′Q | (see the paper)

E(Running time) becomes O(r + n/r)

Setting r =
√
n makes it O(

√
n)

34 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Assume we sample r vertices in the �rst step

Running time is O(r + |CP |+ |C ′P |+ |CQ |+ |C ′Q |) (follows
directly from the algorithm description, assuming we use LP
for intersection tests to execute them in linear time)

Key observation: one can show that E|CP | = O(n/r); the
same is true for E|C ′P |, E|CQ | and E|C ′Q | (see the paper)

E(Running time) becomes O(r + n/r)

Setting r =
√
n makes it O(

√
n)

34 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Yao's minimax principle =⇒ �nd a di�cult distribution:

Polygons P and Q lie to the opposite sides of the x-axis

P 's highest vertex is p = (0, 0); Q's lowest vertex is q = (0, δ)

P ∩ Q 6= ∅ ⇐⇒ δ = 0

35 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polygonal intersection: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Any algorithm that detects intersection must have access to q
to check that it lies in the origin

The only operations allowed are:

random sampling of edges

edge-traversing via links

The same argument as for the successor search problem
yields the Ω(

√
n) bound

36 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Outline

1 Context

2 1D: Successor searching

3 2D: Polygonal intersection

4 3D: Polyhedral intersection

5 Applications

37 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in R3, determine

whether they intersect or not and, if they do, report one point in

the intersection.

Example:

Intersection: NO

38 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in R3, determine

whether they intersect or not and, if they do, report one point in

the intersection.

Example:

Intersection: NO

38 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in R3, determine

whether they intersect or not and, if they do, report one point in

the intersection.

Problem complexity depends on the underlying data structures:

1 General case
→ O(n) time (via Linear Programming)

2 Linked lists for edges/vertices/faces, no preprocessing
→ expected O(

√
n) time (Chazelle et al. [2005])

3 P and Q have been preprocessed in O(n)
→ O(log n) time per query (Dobkin and Kirkpatrick [1990])

39 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in R3, determine

whether they intersect or not and, if they do, report one point in

the intersection.

Problem complexity depends on the underlying data structures:

1 General case
→ O(n) time (via Linear Programming)

2 Linked lists for edges/vertices/faces, no preprocessing
→ expected O(

√
n) time (Chazelle et al. [2005])

3 P and Q have been preprocessed in O(n)
→ O(log n) time per query (Dobkin and Kirkpatrick [1990])

39 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in R3, determine

whether they intersect or not and, if they do, report one point in

the intersection.

Problem complexity depends on the underlying data structures:

1 General case
→ O(n) time (via Linear Programming)

2 Linked lists for edges/vertices/faces, no preprocessing
→ expected O(

√
n) time (Chazelle et al. [2005])

3 P and Q have been preprocessed in O(n)
→ O(log n) time per query (Dobkin and Kirkpatrick [1990])

39 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in R3, determine

whether they intersect or not and, if they do, report one point in

the intersection.

Problem complexity depends on the underlying data structures:

1 General case
→ O(n) time (via Linear Programming)

2 Linked lists for edges/vertices/faces, no preprocessing
→ expected O(

√
n) time (Chazelle et al. [2005])

3 P and Q have been preprocessed in O(n)
→ O(log n) time per query (Dobkin and Kirkpatrick [1990])

39 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in R3, determine

whether they intersect or not and, if they do, report one point in

the intersection.

Problem complexity depends on the underlying data structures:

1 General case
→ O(n) time (via Linear Programming)

2 Linked lists for edges/vertices/faces, no preprocessing
→ expected O(

√
n) time (Chazelle et al. [2005])

3 P and Q have been preprocessed in O(n)
→ O(log n) time per query (Dobkin and Kirkpatrick [1990])

39 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polyhedral intersection: Idea of an algorithm

We can design an algorithm of the same structure as in 2D!

However, as we are now in 3D:

We will compute a separating plane L instead of a separating
line in the case there is no intersection

Pieces cut o� by L will be convex polyhedra, not polygons

Implementation requires solving some additional technical issues...
(see the paper)

40 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polyhedral intersection: Idea of an algorithm

We can design an algorithm of the same structure as in 2D!

However, as we are now in 3D:

We will compute a separating plane L instead of a separating
line in the case there is no intersection

Pieces cut o� by L will be convex polyhedra, not polygons

Implementation requires solving some additional technical issues...
(see the paper)

40 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polyhedral intersection: Idea of an algorithm

We can design an algorithm of the same structure as in 2D!

However, as we are now in 3D:

We will compute a separating plane L instead of a separating
line in the case there is no intersection

Pieces cut o� by L will be convex polyhedra, not polygons

Implementation requires solving some additional technical issues...
(see the paper)

40 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polyhedral intersection: Randomized algorithm

Example

Simplify polyhedra P and Q
using O(

√
n) randomly sampled vertices

41 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polyhedral intersection: Randomized algorithm

Example

Test intersection of samples (RP and RQ) via LP.
If they don't intersect, compute a separating plane L

42 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polyhedral intersection: Randomized algorithm

Example

Compute the part of P lying to the other side of L.
Test for intersection with RQ

43 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polyhedral intersection: Randomized algorithm

Example

If again no intersection is found, update the separating plane to L′

44 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Convex polyhedral intersection: Randomized algorithm

Example

Compute the part of Q lying to the other side of L′.
If still no intersection, swap P and Q and repeat.

45 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Outline

1 Context

2 1D: Successor searching

3 2D: Polygonal intersection

4 3D: Polyhedral intersection

5 Applications

46 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Ray shooting (casting)

Ray shooting (ray casting): the problem of ray-surface intersection
detection with. Some computer graphics applications:

Determining the �rst object intersected by a ray
Hidden surface removal
Ray tracing rendering

Can reuse the same algorithm!

Rays are �very skinny� polyhedra
We need only one intersection point

→ Can compute ray-surface intersections in expected O(
√
n) time

47 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Ray shooting (casting)

Ray shooting (ray casting): the problem of ray-surface intersection
detection with. Some computer graphics applications:

Determining the �rst object intersected by a ray
Hidden surface removal
Ray tracing rendering

Can reuse the same algorithm!

Rays are �very skinny� polyhedra
We need only one intersection point

→ Can compute ray-surface intersections in expected O(
√
n) time

47 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Point location in Delaunay triangulations

Relationship between Delaunay triangulations and convex hulls:

Project onto paraboloid
(x , y , x2 + y2) Compute convex hull

Project lower hull faces
back to the plane

Point location in a Delaunay triangulation is equivalent to:

Lifting the points to the paraboloid
Shooting a ray towards their lower convex hull

→ can again be done in expected O(
√
n) time

Similar construction works for Voronoi diagrams

48 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Point location in Delaunay triangulations

Relationship between Delaunay triangulations and convex hulls:

Project onto paraboloid
(x , y , x2 + y2) Compute convex hull

Project lower hull faces
back to the plane

Point location in a Delaunay triangulation is equivalent to:

Lifting the points to the paraboloid
Shooting a ray towards their lower convex hull

→ can again be done in expected O(
√
n) time

Similar construction works for Voronoi diagrams

48 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

Point location in Delaunay triangulations

Relationship between Delaunay triangulations and convex hulls:

Project onto paraboloid
(x , y , x2 + y2) Compute convex hull

Project lower hull faces
back to the plane

Point location in a Delaunay triangulation is equivalent to:

Lifting the points to the paraboloid
Shooting a ray towards their lower convex hull

→ can again be done in expected O(
√
n) time

Similar construction works for Voronoi diagrams

48 / 50 Mikhail Dubov Sublinear Geometric Algorithms

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

References I

B. Chazelle and D. P. Dobkin. Intersection of convex objects in two
and three dimensions. J. ACM, 34(1):1�27, January 1987. ISSN
0004-5411. doi: 10.1145/7531.24036. URL
http://doi.acm.org/10.1145/7531.24036.

Bernard Chazelle, Ding Liu, and Avner Magen. Sublinear geometric
algorithms. In Artur Czumaj, S. Muthu Muthukrishnan, Ronitt
Rubinfeld, and Christian Sohler, editors, Sublinear Algorithms,
volume 05291 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum f�ur Informatik (IBFI),
Schloss Dagstuhl, Germany, 2005. URL
http://dblp.uni-trier.de/db/conf/dagstuhl/P5291.

html#ChazelleLM05.

49 / 50 Mikhail Dubov Sublinear Geometric Algorithms

http://doi.acm.org/10.1145/7531.24036
http://dblp.uni-trier.de/db/conf/dagstuhl/P5291.html#ChazelleLM05
http://dblp.uni-trier.de/db/conf/dagstuhl/P5291.html#ChazelleLM05

Context 1D: Successor searching 2D: Polygonal intersection 3D: Polyhedral intersection Applications References

References II

David P. Dobkin and David G. Kirkpatrick. Determining the
separation of preprocessed polyhedra: A uni�ed approach. In
Proceedings of the Seventeenth International Colloquium on

Automata, Languages and Programming, pages 400�413, New
York, NY, USA, 1990. Springer-Verlag New York, Inc. ISBN
0-387-52826-1. URL
http://dl.acm.org/citation.cfm?id=90397.91344.

Raimund Seidel. Linear programming and convex hulls made easy.
In Proceedings of the Sixth Annual Symposium on Computational

Geometry, SCG '90, pages 211�215, New York, NY, USA, 1990.
ACM. ISBN 0-89791-362-0. doi: 10.1145/98524.98570. URL
http://doi.acm.org/10.1145/98524.98570.

50 / 50 Mikhail Dubov Sublinear Geometric Algorithms

http://dl.acm.org/citation.cfm?id=90397.91344
http://doi.acm.org/10.1145/98524.98570

	Context
	1D: Successor searching
	2D: Polygonal intersection
	3D: Polyhedral intersection
	Applications

