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Context: Geometric algorithms

70's-90's: Classical computational geometry algorithms
→ Convex hulls
→ Voronoi diagrams
→ Delaunay trianguations
→ Linear programming

00's: Research on sublinear algorithms

Motivation: Availability of massive geometric datasets

Problem: Impossible to examine more than a fraction of the

input
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Context: Sublinear geometric algorithms

Two main approaches to achieve sublinearity:

Data preprocessing

Look at the whole data once, make

the subsequent queries fast
Example: Point location in Rk

One can build a kd-tree in O(n)
Nearest neighbor search: O(log n)
per query on average

Randomization

Look only at a portion of the data
Example: Point location in
Delaunay triangulations (stay tuned)

Expected O(
√
n) time per query

without preprocessing
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Context: Randomized algorithms

Two main types of randomized algorithms:

Monte Carlo algorithms:

Running time is bounded

P(Results are correct) < 1

Ex.: Miller-Rabin primality test

Las Vegas algorithms:

E(Running time) is bounded

Results are always correct

Ex.: Randomized QuickSort

3 12 31 34 38 62 97

Random pivot selection =⇒ O(n2) time very unlikely

→ Monte Carlo algorithms sometimes give wrong answers
→ Las Vegas algorithms sometimes run for a very long time
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Our focus

In what follows, we will cover several

randomized Las Vegas algorithms

with no extra preprocessing

having E(Running time) = O(
√
n).

3 8 12

1D: Sucessor search 2D: Polygonal
intersection

3D: Polyhedral
intersection

Credit for images: Chazelle et al.
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1D: Successor searching

Problem

Given a sorted doubly-linked list of n keys and a number x , �nd the

smallest key y ≥ x (the successor of x).

Example:

3 8 12 31 34 38 62 97

succ(50) = 62
succ(12) = 12
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1D: Successor searching

Problem

Given a sorted doubly-linked list of n keys and a number x , �nd the

smallest key y ≥ x (the successor of x).

Complexity depends on how the list is stored:

1 The location of elements is unknown

3 12 31 34 38 62 97

→ O(n) time, o(n) impossible

2 List elements are stored in consecutive locations

34 97 12 3 38 31 62

→ expected O(
√
n) time (Chazelle et al. [2005])

3 Elements are consecutive and ordered

3 12 31 34 38 62 97

→ O(log n) time (binary search)
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Successor searching: Idea of an algorithm

succ(50) =?

3 8 12 31 34 38 62 97

Sample some elements from the list:

3 8 12 31 34 38 62 97

Find the elements in the sample that surround our target:

3 8 12 31 34 38 62 97

Traverse the sublist and �nd the successor:

3 8 12 31 34 38 62 97
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Successor searching: Randomized algorithm

Algorithm: Randomized successor searching in O(
√
n) time

Input : Doubly-linked list A = A[1] . . .A[n] of n numbers stored in
an array (table); number x

Output: The smallest number y ∈ A s.t. y ≥ x (if exists)
1 Sample S ⊂ A, |S | =

√
n, from A uniformly at random

2 p = argmaxi=1...
√
n S [i ] s.t. S [i ] ≤ x // predecessor in S

3 q = argmini=1...
√
n S [i ] s.t. S [i ] ≥ x // successor in S

4 s = argmini=p...s A[i ] s.t. A[i ] ≥ x // traverse A from p

5 return A[s]

Note: p and q may not exist

Elements should be:

consecutive for e�cient sampling in step 1

doubly-connected for list traversal in step 4
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Successor searching: Analysis

Theorem

Successor searching can be done in O(
√
n) expected time per

query, which is optimal.

Proof

Some intuition:

Our sample S is a subset of
√
n elements from A, |A| = n

We locate p and q in our sample in O(|S |) = O(
√
n) time

The expected distance between these two elements is
|A|/|S | = n/

√
n =
√
n

So traversing A[p] . . .A[q] takes O(
√
n) expected time
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Successor searching: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Let A[s] be the desired successor

Let S [k] be the nearest element to A among those in S

Event Qd : we don't hit any of A[s − d ] . . .A[s + d ] after
taking

√
n random samples

P(dist(A[s], S [k]) = d) = P(Qd−1)− P(Qd)

E(dist(A[s], S [k]) =
∑
i≥1

i · (P(Qi−1)− P(Qi )) =
∑
i≥0

P(Qi )

≤
√
n
∑
c≥0

P(Qc
√
n) ≤

√
n
∑
c≥0

(1− c/
√
n)
√
n

≤
√
n
∑
c≥0

e−c = O(
√
n)
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Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Yao's minimax principle:

E(Running time of the optimal Las Vegas

randomized algorithm)

≥
E(Running time of an optimal

deterministic algorithm

for any �xed input distribution)

Study the distribution of di�cult inputs

Show that no deterministic algorithm can perform well on it
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Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Our model:

Input: a permutation σ of 1 . . . n, s.t. A[σ(i)] = i
Goal: �nd succ(n)

The optimal deterministic algorithm is a sequence of two types
of operations:

�Operation A�:

Pick a visited location σ(i)
Visit one of its neighbours: T [σ(i − 1)] or T [σ(i + 1)]

�Operation B�: Visit some unvisited T [σ(i)]
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Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Question: On a random input, how likely is it to discover one of
the last

√
n items after a operations �A� and b operations �B�?

B B A T T T

A very crude estimate:

P(tail item not picked after (a+b) ops.) ≥ (1−
√
n+a+b
n )a+b

Assume the total number of operations before visiting one of the
last
√
n elements in the tail of the list does not exceed

√
n

However, we still have:
E(a + b) ≥

∑√n
a+b=1(a + b + 1)

√
n
n (1−

√
n+a+b
n )a+b = Ω(

√
n)

Once in the tail, the deterministic algorithm can get to the last
element in O(

√
n) operations �A�

So the average running time of our optimal deterministic
algorithm is Ω(

√
n)
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Successor searching: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Question: On a random input, how likely is it to discover one of
the last

√
n items after a operations �A� and b operations �B�?

B B A T T T

A very crude estimate:

P(tail item not picked after (a+b) ops.) ≥ (1−
√
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Assume the total number of operations before visiting one of the
last
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n elements in the tail of the list does not exceed
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2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each,

determine whether they intersect or not and, if they do, report one

point in the intersection.

Example:

Intersection: YES
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2D: Convex polygonal intersection

Problem

Given two convex polygons P and Q, with n vertices each,

determine whether they intersect or not and, if they do, report one

point in the intersection.

Again, complexity depends on how polygons are stored:

1 General case
→ O(n) time (e.g. via Linear Programming, Seidel [1990])

2 Vertices are stored in a clockwise order in a
doubly-linked list (allowing for random sampling)
→ expected O(

√
n) time (Chazelle et al. [2005])

3 Vertices are stored in an array in cyclic order
→ O(log n) time (Chazelle and Dobkin [1987])
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Detour: Classical geometric data structures

Idea: allow for quick traversal between faces, edges, and vertices
due to the explicitly linked structure of the objects.

Doubly connected edge list (DCEL)

Doubly-linked list of half-edges

Each half-edge bounds a single face

Standard data structure in CGAL
(www.cgal.org)

Winged edge

Also edge-based

For each edge, stores its vertices, left
and right faces etc.

21 / 50 Mikhail Dubov Sublinear Geometric Algorithms
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Convex polygonal intersection: Idea of an algorithm

Start with the
input polygons

Simplify polygons
by sampling. Check
if they intersect

If not, test the
potentially

overlapping region
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Convex polygonal intersection: Randomized algorithm

Algorithm: Convex polygonal intersection in O(
√
n) time

Input : Two convex polygons P and Q, |Pvertices| = |Qvertices| = n
Output: Report one point in P ∩ Q (if they intersect)

1 Sample SP ⊂ Pvertices, SQ ⊂ Qvertices, |SP | = |SQ | =
√
n from P and Q randomly

2 Let RP = conv(SP) ⊂ P , RQ = conv(SQ) ⊂ Q // convex hulls (conceptual)

// Linear Programming finds RP ∩ RQ without computing convex hulls

3 if RP ∩ RQ 6= ∅ then
4 return Intersection point of RP and RQ

5 end
6 else
7 L = bi-tangent separating line for RP and RQ

8 CP = part of P to the RQ side of L
9 CQ = part of Q to the RP side of L

10 Check RP and CQ for intersection. If they don't intersect, �nd a line L′ that
separates RP and CQ , and compute C ′P , the part of P on the other side of L′.
Test C ′P and CQ for intersection.

11 If no intersection is found, repeat step 10 for P and Q swapped.

12 end
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Convex polygonal intersection: Randomized algorithm

Example

Input: Polygons P and Q
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Convex polygonal intersection: Randomized algorithm

Example

Simpli�ed versions of P and Q:
convex hulls RP and RQ of size O(

√
n)
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Convex polygonal intersection: Randomized algorithm

Example

RP ∩ RQ = ∅ =⇒ compute bi-tangent separating line L
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Convex polygonal intersection: Randomized algorithm

Example

Compute CQ , the part of Q to the other side of L.
Case 1: RP ∩ CQ 6= ∅ =⇒ we are done
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Convex polygonal intersection: Randomized algorithm

Example

Case 2: RP ∩ CQ = ∅
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Convex polygonal intersection: Randomized algorithm

Example

=⇒ compute L′, the separating line for RP and CQ
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Convex polygonal intersection: Randomized algorithm

Example

Compute C ′P , the part of P to the other side of L′.
Test C ′P and CQ for intersection
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Convex polygonal intersection: Randomized algorithm

Example

Case 1: C ′P ∩ CQ 6= ∅ =⇒ we are done
Case 2: C ′P ∩ CQ = ∅ =⇒ re-run with P and Q exchanged
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Convex polygonal intersection: Randomized algorithm

Q. Why don't we design a recursive algorithm instead?

A. Because our model restricts us to global sampling only.

We can only sample e�ciently in the main problem, but not in
subproblems

So we have to treat our intersection subproblems in a
�classical� (linear) way
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Convex polygonal intersection: Analysis

Theorem

To check whether two convex n-gons intersect can be done in

O(
√
n) expected time, which is optimal.

Proof

Some intuition:

For intersection tests at each step we use Linear Programming,
which works in O(r) time for inputs of size r

After sampling
√
n vertices from each n-gon, we have r =

√
n

If the intersection test for our simpli�ed polygons RP and RQ

fails, then the subsequent tests involving CP , CQ etc. will still
process a sublinear number of vertices
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Convex polygonal intersection: Analysis

Proof (Cont.)

Part I: Expected time is O(
√
n).

Assume we sample r vertices in the �rst step

Running time is O(r + |CP |+ |C ′P |+ |CQ |+ |C ′Q |) (follows
directly from the algorithm description, assuming we use LP
for intersection tests to execute them in linear time)

Key observation: one can show that E|CP | = O(n/r); the
same is true for E|C ′P |, E|CQ | and E|C ′Q | (see the paper)

E(Running time) becomes O(r + n/r)

Setting r =
√
n makes it O(

√
n)
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Convex polygonal intersection: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Yao's minimax principle =⇒ �nd a di�cult distribution:

Polygons P and Q lie to the opposite sides of the x-axis

P 's highest vertex is p = (0, 0); Q's lowest vertex is q = (0, δ)

P ∩ Q 6= ∅ ⇐⇒ δ = 0
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Convex polygonal intersection: Analysis

Proof (Cont.)

Part II: O(
√
n) is optimal.

Any algorithm that detects intersection must have access to q
to check that it lies in the origin

The only operations allowed are:

random sampling of edges

edge-traversing via links

The same argument as for the successor search problem
yields the Ω(

√
n) bound
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3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in R3, determine

whether they intersect or not and, if they do, report one point in

the intersection.

Example:

Intersection: NO
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3D: Convex polyhedral intersection

Problem

Given two n-vertex convex polyhedra P and Q in R3, determine

whether they intersect or not and, if they do, report one point in

the intersection.

Problem complexity depends on the underlying data structures:

1 General case
→ O(n) time (via Linear Programming)

2 Linked lists for edges/vertices/faces, no preprocessing
→ expected O(

√
n) time (Chazelle et al. [2005])

3 P and Q have been preprocessed in O(n)
→ O(log n) time per query (Dobkin and Kirkpatrick [1990])
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→ O(n) time (via Linear Programming)

2 Linked lists for edges/vertices/faces, no preprocessing
→ expected O(

√
n) time (Chazelle et al. [2005])

3 P and Q have been preprocessed in O(n)
→ O(log n) time per query (Dobkin and Kirkpatrick [1990])
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Convex polyhedral intersection: Idea of an algorithm

We can design an algorithm of the same structure as in 2D!

However, as we are now in 3D:

We will compute a separating plane L instead of a separating
line in the case there is no intersection

Pieces cut o� by L will be convex polyhedra, not polygons

Implementation requires solving some additional technical issues...
(see the paper)
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Convex polyhedral intersection: Randomized algorithm

Example

Simplify polyhedra P and Q
using O(

√
n) randomly sampled vertices
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Convex polyhedral intersection: Randomized algorithm

Example

Test intersection of samples (RP and RQ) via LP.
If they don't intersect, compute a separating plane L
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Convex polyhedral intersection: Randomized algorithm

Example

Compute the part of P lying to the other side of L.
Test for intersection with RQ
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Convex polyhedral intersection: Randomized algorithm

Example

If again no intersection is found, update the separating plane to L′
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Convex polyhedral intersection: Randomized algorithm

Example

Compute the part of Q lying to the other side of L′.
If still no intersection, swap P and Q and repeat.
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Outline

1 Context

2 1D: Successor searching

3 2D: Polygonal intersection

4 3D: Polyhedral intersection

5 Applications
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Ray shooting (casting)

Ray shooting (ray casting): the problem of ray-surface intersection
detection with. Some computer graphics applications:

Determining the �rst object intersected by a ray
Hidden surface removal
Ray tracing rendering

Can reuse the same algorithm!

Rays are �very skinny� polyhedra
We need only one intersection point

→ Can compute ray-surface intersections in expected O(
√
n) time
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Point location in Delaunay triangulations

Relationship between Delaunay triangulations and convex hulls:

Project onto paraboloid
(x , y , x2 + y2) Compute convex hull

Project lower hull faces
back to the plane

Point location in a Delaunay triangulation is equivalent to:

Lifting the points to the paraboloid
Shooting a ray towards their lower convex hull

→ can again be done in expected O(
√
n) time

Similar construction works for Voronoi diagrams
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