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Annotated su�x trees

Letter-based method for text analysis

Annotated su�x trees: full-text index

Basic computation: relevance score of a keyphrase to the
text collection indexed by AST

Range of applications:

Text classi�cation (e.g. spam �ltering)
Feature extraction
Keyphrase analysis (stay tuned)
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Su�x trees

Figure: Su�x tree for string �XABXAC�

Su�x tree for a string S (|S | = n) is a rooted directed tree
encoding all the su�xes of that string [3]
The concatenation of edge labels on every path from the root node
to one of the leaves makes up one of the su�xes of that string, i.e.
S [i . . . n].
It is also required that each internal node has two or more children,
and each edge is labeled with a non-empty substring of S .
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Su�x trees

Various O(n) construction algorithms exist (Ukkonen, Weiner)

Establishes a linear-time solution for the exact pattern
matching problem

Su�x tree is a full-text index
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Annotated su�x trees

Figure: Annotated su�x tree for string �XABXAC�

Extension: node labels

Node label f (v) indicates the number of entries of the
substring on the path from root to v in the text collection
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AST relevance score

Figure: Naive AST representation (as a trie) for a collection of 3 strings

Conditional probability of a node given its parent:

p̂(v) =
f (v)

f (parent(v))
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AST relevance score

Relevance score computation for keyword S in text collection T
(described in terms of a trie, not a tree):

For each su�x S [i . . . n] of S , try to match it against the su�x
tree AST (T ), starting at the root.

If, for su�x s, we matched exactly k symbols in the tree, then

scoresuff (s) =

∑k
i=1 p̂(vi )

k
,

where vi is the i-th node on the matching path starting at the
root (if k = 0, then scoresuff (s) = 0).

The �nal score for keyword S is obtained as

SCORE (S) =

∑|S |
i=1 scoresuff (S [i :])

|S |
.
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AST relevance score: Example 1

T = [“XAB“, “XAC“, “CAB“]

SCORE (“ABC“) =
score(“ABC“) + score(“BC“) + score(“C“)

3
=

=
(0.33+ 0.67)/2+ (0.22)/1+ (0.22)/1

3
= 0.31
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AST relevance score: Example 2

T = [“XAB“, “XAC“, “CAB“]

SCORE (“XYZ“) =
score(“XYZ“) + score(“YZ“) + score(“Z“)

3
=

=
(0.22)/1+ 0+ 0

3
= 0.07

10 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees



Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

AST relevance score: Example 3

SCORE (“Alice“) = 0.32

SCORE (“Bob“) = 0.04

(Usually, SCORE > 0.2 is a strong evidence of relevance)

11 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees



Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

AST relevance score: alternatives & summary

Alternative solution: count the number of occurrences of a
keyword in the text colleciton

Word-based approach
Requires at least normalization, NLP involved
Can also use the Levenstein distance for more sensitivity
Relevance score de�nition & interpretation is not obvious

AST Relevance score:

Letter-based, �fuzzy� approach
Language-independent, no NLP involved
Interpretation: average conditional probability of an
occurrence of a single symbol of the input key phrase in the
text collection
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Enhanced annotated su�x trees

In the original papers, AST was represented as a trie =⇒
O(n2) time & space complexity.

Even when implemented properly with su�x trees, the AST
construction time & space usage still has a large hidden
constant behind O(n).

We propose an enhanced implementation that uses su�x
arrays.
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From su�x tries to su�x trees

Ensure the linearity of our data structure:

Su�x trie: one node per letter, O(n2) time & space

Su�x tree: compacted edges, no chains, O(n) time & space

Figure: Su�x trie

Figure: Su�x tree
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From su�x tries to su�x trees

To construct annotated su�x trees in O(n), simple preprocessing is
needed:

Algorithm LinearASTConstruction(C)
Input. String collection C = {S1, . . . ,Sm}
Output. Generalized annotated su�x tree for C .

1 Construct C ′ = {S1$1, . . . ,Sm$m}, where $i are unique
characters that do not appear in S1 . . . Sm.

2 Construct a generalized su�x tree T for collection C ′ using a
linear-time algorithm (e.g. the Ukkonen algorithm).

3 for l in leaves(T )
4 do set f (l)← 1

5 Run a post�x depth-�rst tree traversal on the su�x tree T .
For each inner node v , set f (v)←

∑
u∈children(v) f (u).
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From su�x tries to su�x trees

One minor change in the su�x relevance score:

Figure: Su�x trie

scoresuff (s) =

∑k
i=1 p̂(vi )

k

Figure: Su�x tree

If l is the number of symbols in
the match, then

scoresuff (s) =

∑k
i=1 p̂(vi ) + l − k

l
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From su�x trees to su�x arrays

Su�x array for a string S (|S | = n) is an array of n integer
numbers, enumerating the n su�xes of S in lexicographic
order.

Table: Su�x array for string �XABXAC�
(the su�xes are not actually stored)

i su�x array S[su�[i]:]

0 2 ABXAC

1 5 AC

2 3 BXAC

3 6 C

4 1 XABXAC

5 4 XAC

Su�x arrays are more space e�cient than su�x trees.
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Enhanced su�x arrays

Abouelhoda, Kurtz, & Ohlebusch [1] have shown that it is
possible to systematically replace every algorithm that uses
su�x trees with another one based on su�x arrays.

Need to enhance the su�x array with two auxiliary arrays:

lcp-table for bottom-up traversal
child-table for top-down traversal

Can be implemented to take no more than 10 bytes per input
symbol (at least 20 for su�x trees)
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Enhanced su�x arrays

Table: Enhanced su�x array for string �XABXAC�

i su�x array lcp-table
child-table

S[su�[i]:]
1. 2. 3.

0 1 0 1 2 ABXAC

1 4 1 AC

2 2 0 1 3 BXAC

3 5 0 4 C

4 0 0 XABXAC

5 3 2 XAC
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Enhanced annotated su�x arrays

We need to store annotations for su�x tree nodes

The number of nodes in a su�x tree cannot exceed (2n − 1)

After preprocessing, all the leaves will be annotated with 1, so
there is no need to store these annotations explicitly

We are left with at most (n − 1) numbers to store =⇒ can
introduce one more auxiliary array of length n
(annotation-table)
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Enhanced annotated su�x arrays

Table: Enhanced annotated su�x array for string �XABXAC�

i su�x array lcp-table
child-table

annotation S[su�[i]:]
1. 2. 3.

0 1 0 1 2 6 ABXAC

1 4 1 2 AC

2 2 0 1 3 BXAC

3 5 0 4 C

4 0 0 XABXAC

5 3 2 2 XAC
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Enhanced annotated su�x arrays

Figure: Annotated su�x tree for string �XABXAC�
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Enhanced annotated su�x arrays

Node-to-array mapping � via virtual lcp-trees:

Can be restored from the lcp-table

Nodes correspond to the inner nodes of the su�x tree

Nodes are represented as 〈l , i , j〉: the lcp-value l and the left
and right boundaries of the lcp-interval (i , j)

For each lcp-interval v = 〈l , i , j〉 there exists a unique index,
index(v) ∈ [0; n − 1], which is equal to the smallest k , such
that k > i and lcp[k] = l . It is this mapping that we use to
store the inner node frequency annotations.
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Enhanced annotated su�x arrays

Algorithm LinearEASAConstruction(C)
Input. String collection C = {S1, . . . ,Sm}
Output. Enhanced su�x array for C with substring frequency
annotations.

1 Construct a string S = S1$1 + · · ·+ Sm$m, where $i are
unique termination symbols.

2 Construct a su�x array A for string S using a linear-time
algorithm (e.g. the K�arkk�ainen-Sanders algorithm) and two
auxiliary arrays: lcp-array and child-array.

3 Simulate a post�x depth-�rst tree traversal on the su�x array
A. At each of the virtual inner nodes, corresponding to an
lcp-interval v = 〈l , i , j〉, where i < j , set
annotation[index(v)] =∑

u∈children(v) annotation[index(u)] + #(〈l , i , j〉 : i = j).
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Enhanced annotated su�x arrays: Experimental results

Figure: Experimental results

Implementation: Python 2.7

10x less memory � due to su�x arrays + the Numpy library
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Package EAST

EAST = �Enhanced Annotated Su�x Trees�

Open-source:
https://github.com/msdubov/AST-text-analysis

Registered in Python Package Index and is easy to install:

$ pip install EAST
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Package EAST

Provides command-line user interface:

$ east keyphrases table <keyphrases_list.txt>

<path/to/the/text/collection/>

Can be used as a Python library:

>>> from east.asts.base import AST

>>> ast = AST.get_ast([''XAB'', ''XAC'', ''CAB''])

>>> ast.score(''ABC'')

0.3148148148148149
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Synonym extraction

EAST implements one laguage-dependent feature: synonym
extraction

Motivation: Relevance scores should be similar, say, for �plant
taxonomy� and �plant classi�cation�, even if the latter can be
rarely found in the text collection.

Algorithm: distributional synonym extraction algorithm based
on that by Lin [4], which employs the so-called dependency
triples (w1, r ,w2) (idea: similar texts appear in similar

contexts)

Domain-speci�c synonyms are likely to be found with this
context-based approach
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Synonym extraction

Dependency triples extraction is done by Yandex Tomita
parser (based on grammatical templates like �adjective +

substantive� or �verb + arverb�)

Grammar:

S -> adj_mod_of interp (Relation.adj_mod_of::...) |

adv_of interp (Relation.adv_of::norm="inf") |

adv interp (Relation.adv::norm="inf") |

...

adj_mod_of -> Adj<gnc-agr[1]> Noun<gnc-agr[1]>;

adv_of -> Adv Verb;

adv -> Verb Adv;

...
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Synonym extraction

Synonyms extracted from a text collection from the �Izvestia�
newspaper:

�head� (�ãëàâà�) ⇔ �CEO� (�ãåíäèðåêòîð�)
�high� (�âûñîêèé�) ⇔ �low� (�íèçêèé�)
. . .

Low precision is not very critical: among synonimous key
phrases we chose the one that has maxw∈syn(S) SCORE (w)

To extract synonyms before computing relevance scores:

$ east -s keyphrases table <keyphrases_list.txt>

<path/to/the/text/collection/>
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LM Monitor: Concept

LM Monitor = �Latent Meaning Monitor� [2]
1 Web crawling

RuNeWC: Russian Newspaper Web Corpus
5 sources available now

2 Keyphrase analysis

Keyphrases are provided by the user
Using the AST relevance scores for these keyphrases, a
keyphrase reference graph is built
Text visualization tool
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LM Monitor: Development

1 Research group �Text analysis and visualization methods�

2 Head: Boris Mirkin (Sc.D, prof.)

3 Sta�: Bachelor/Master/PhD students
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LM Monitor: Architecture

36 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees



Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

LM Monitor: System
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Keyphrase reference graphs

Keyphrase reference graphs:

Model directed relations between keyphrases

Nodes are keyphrases

For a keyphrase A,

r ∈ [0; 1] is a relevance threshold : if SCOREAST (T )(A) > r ,
then A is considered to be relevant to text T (usually r = 0.2)
F (A) = {T : SCOREAST (T )(A) > r}

c ∈ [0; 1] is a con�dence threshold

For keyphrases A and B , if |F (B)∩F (A)|
|F (A)| ≥ c , then there is an

edge in the graph from keyphrase A to keyphrase B (usually
c = 0.6)

A→ B is like an associative rule
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LM Monitor: Keyphrase reference graphs
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LM Monitor: Keyphrase reference graphs
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LM Monitor: Keyphrase reference graphs

Figure: Keyphrase reference graph built for Oct/Nov 2014
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LM Monitor: Keyphrase reference graphs

Figure: Keyphrase reference graph built USA/France constitutions
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Future work

Automated graph analysis (central nodes visualization etc.)

Temporal graph analysis (how do graphs change over time?)

Better support for synonyms
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