
Annotated su�x trees
Algorithms

Implementation
LM Monitor

Text Analysis with

Enhanced Annotated Su�x Trees

Algorithms and Implementation

Mikhail Dubov1

National Research University Higher School of Economics

Computer Science faculty, Moscow, Russia

AIST'2015

1 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

Table of Contents

1 Annotated su�x trees
Su�x trees
Annotated su�x trees
AST relevance score

2 Algorithms
From su�x tries to su�x trees
From su�x trees to su�x arrays

3 Implementation
Package EAST
Synonym extraction

4 LM Monitor
Concept & architecture
Keyphrase reference graphs

2 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

Annotated su�x trees

Letter-based method for text analysis

Annotated su�x trees: full-text index

Basic computation: relevance score of a keyphrase to the
text collection indexed by AST

Range of applications:

Text classi�cation (e.g. spam �ltering)
Feature extraction
Keyphrase analysis (stay tuned)

3 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

Su�x trees

Figure: Su�x tree for string �XABXAC�

Su�x tree for a string S (|S | = n) is a rooted directed tree
encoding all the su�xes of that string [3]
The concatenation of edge labels on every path from the root node
to one of the leaves makes up one of the su�xes of that string, i.e.
S [i . . . n].
It is also required that each internal node has two or more children,
and each edge is labeled with a non-empty substring of S .

4 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

Su�x trees

Various O(n) construction algorithms exist (Ukkonen, Weiner)

Establishes a linear-time solution for the exact pattern
matching problem

Su�x tree is a full-text index

5 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

Annotated su�x trees

Figure: Annotated su�x tree for string �XABXAC�

Extension: node labels

Node label f (v) indicates the number of entries of the
substring on the path from root to v in the text collection

6 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

AST relevance score

Figure: Naive AST representation (as a trie) for a collection of 3 strings

Conditional probability of a node given its parent:

p̂(v) =
f (v)

f (parent(v))

7 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

AST relevance score

Relevance score computation for keyword S in text collection T
(described in terms of a trie, not a tree):

For each su�x S [i . . . n] of S , try to match it against the su�x
tree AST (T), starting at the root.

If, for su�x s, we matched exactly k symbols in the tree, then

scoresuff (s) =

∑k
i=1 p̂(vi)

k
,

where vi is the i-th node on the matching path starting at the
root (if k = 0, then scoresuff (s) = 0).

The �nal score for keyword S is obtained as

SCORE (S) =

∑|S |
i=1 scoresuff (S [i :])

|S |
.

8 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

AST relevance score: Example 1

T = [“XAB“, “XAC“, “CAB“]

SCORE (“ABC“) =
score(“ABC“) + score(“BC“) + score(“C“)

3
=

=
(0.33+ 0.67)/2+ (0.22)/1+ (0.22)/1

3
= 0.31

9 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

AST relevance score: Example 2

T = [“XAB“, “XAC“, “CAB“]

SCORE (“XYZ“) =
score(“XYZ“) + score(“YZ“) + score(“Z“)

3
=

=
(0.22)/1+ 0+ 0

3
= 0.07

10 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

AST relevance score: Example 3

SCORE (“Alice“) = 0.32

SCORE (“Bob“) = 0.04

(Usually, SCORE > 0.2 is a strong evidence of relevance)

11 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Su�x trees
Annotated su�x trees
AST relevance score

AST relevance score: alternatives & summary

Alternative solution: count the number of occurrences of a
keyword in the text colleciton

Word-based approach
Requires at least normalization, NLP involved
Can also use the Levenstein distance for more sensitivity
Relevance score de�nition & interpretation is not obvious

AST Relevance score:

Letter-based, �fuzzy� approach
Language-independent, no NLP involved
Interpretation: average conditional probability of an
occurrence of a single symbol of the input key phrase in the
text collection

12 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

Table of Contents

1 Annotated su�x trees
Su�x trees
Annotated su�x trees
AST relevance score

2 Algorithms
From su�x tries to su�x trees
From su�x trees to su�x arrays

3 Implementation
Package EAST
Synonym extraction

4 LM Monitor
Concept & architecture
Keyphrase reference graphs

13 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

Enhanced annotated su�x trees

In the original papers, AST was represented as a trie =⇒
O(n2) time & space complexity.

Even when implemented properly with su�x trees, the AST
construction time & space usage still has a large hidden
constant behind O(n).

We propose an enhanced implementation that uses su�x
arrays.

14 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

From su�x tries to su�x trees

Ensure the linearity of our data structure:

Su�x trie: one node per letter, O(n2) time & space

Su�x tree: compacted edges, no chains, O(n) time & space

Figure: Su�x trie

Figure: Su�x tree

15 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

From su�x tries to su�x trees

To construct annotated su�x trees in O(n), simple preprocessing is
needed:

Algorithm LinearASTConstruction(C)
Input. String collection C = {S1, . . . ,Sm}
Output. Generalized annotated su�x tree for C .

1 Construct C ′ = {S1$1, . . . ,Sm$m}, where $i are unique
characters that do not appear in S1 . . . Sm.

2 Construct a generalized su�x tree T for collection C ′ using a
linear-time algorithm (e.g. the Ukkonen algorithm).

3 for l in leaves(T)
4 do set f (l)← 1

5 Run a post�x depth-�rst tree traversal on the su�x tree T .
For each inner node v , set f (v)←

∑
u∈children(v) f (u).

16 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

From su�x tries to su�x trees

One minor change in the su�x relevance score:

Figure: Su�x trie

scoresuff (s) =

∑k
i=1 p̂(vi)

k

Figure: Su�x tree

If l is the number of symbols in
the match, then

scoresuff (s) =

∑k
i=1 p̂(vi) + l − k

l

17 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

From su�x trees to su�x arrays

Su�x array for a string S (|S | = n) is an array of n integer
numbers, enumerating the n su�xes of S in lexicographic
order.

Table: Su�x array for string �XABXAC�
(the su�xes are not actually stored)

i su�x array S[su�[i]:]

0 2 ABXAC

1 5 AC

2 3 BXAC

3 6 C

4 1 XABXAC

5 4 XAC

Su�x arrays are more space e�cient than su�x trees.

18 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

Enhanced su�x arrays

Abouelhoda, Kurtz, & Ohlebusch [1] have shown that it is
possible to systematically replace every algorithm that uses
su�x trees with another one based on su�x arrays.

Need to enhance the su�x array with two auxiliary arrays:

lcp-table for bottom-up traversal
child-table for top-down traversal

Can be implemented to take no more than 10 bytes per input
symbol (at least 20 for su�x trees)

19 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

Enhanced su�x arrays

Table: Enhanced su�x array for string �XABXAC�

i su�x array lcp-table
child-table

S[su�[i]:]
1. 2. 3.

0 1 0 1 2 ABXAC

1 4 1 AC

2 2 0 1 3 BXAC

3 5 0 4 C

4 0 0 XABXAC

5 3 2 XAC

20 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

Enhanced annotated su�x arrays

We need to store annotations for su�x tree nodes

The number of nodes in a su�x tree cannot exceed (2n − 1)

After preprocessing, all the leaves will be annotated with 1, so
there is no need to store these annotations explicitly

We are left with at most (n − 1) numbers to store =⇒ can
introduce one more auxiliary array of length n
(annotation-table)

21 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

Enhanced annotated su�x arrays

Table: Enhanced annotated su�x array for string �XABXAC�

i su�x array lcp-table
child-table

annotation S[su�[i]:]
1. 2. 3.

0 1 0 1 2 6 ABXAC

1 4 1 2 AC

2 2 0 1 3 BXAC

3 5 0 4 C

4 0 0 XABXAC

5 3 2 2 XAC

22 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

Enhanced annotated su�x arrays

Figure: Annotated su�x tree for string �XABXAC�

23 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

Enhanced annotated su�x arrays

Node-to-array mapping � via virtual lcp-trees:

Can be restored from the lcp-table

Nodes correspond to the inner nodes of the su�x tree

Nodes are represented as 〈l , i , j〉: the lcp-value l and the left
and right boundaries of the lcp-interval (i , j)

For each lcp-interval v = 〈l , i , j〉 there exists a unique index,
index(v) ∈ [0; n − 1], which is equal to the smallest k , such
that k > i and lcp[k] = l . It is this mapping that we use to
store the inner node frequency annotations.

24 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

Enhanced annotated su�x arrays

Algorithm LinearEASAConstruction(C)
Input. String collection C = {S1, . . . ,Sm}
Output. Enhanced su�x array for C with substring frequency
annotations.

1 Construct a string S = S1$1 + · · ·+ Sm$m, where $i are
unique termination symbols.

2 Construct a su�x array A for string S using a linear-time
algorithm (e.g. the K�arkk�ainen-Sanders algorithm) and two
auxiliary arrays: lcp-array and child-array.

3 Simulate a post�x depth-�rst tree traversal on the su�x array
A. At each of the virtual inner nodes, corresponding to an
lcp-interval v = 〈l , i , j〉, where i < j , set
annotation[index(v)] =∑

u∈children(v) annotation[index(u)] + #(〈l , i , j〉 : i = j).

25 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

From su�x tries to su�x trees
From su�x trees to su�x arrays

Enhanced annotated su�x arrays: Experimental results

Figure: Experimental results

Implementation: Python 2.7

10x less memory � due to su�x arrays + the Numpy library

26 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Package EAST
Synonym extraction

Table of Contents

1 Annotated su�x trees
Su�x trees
Annotated su�x trees
AST relevance score

2 Algorithms
From su�x tries to su�x trees
From su�x trees to su�x arrays

3 Implementation
Package EAST
Synonym extraction

4 LM Monitor
Concept & architecture
Keyphrase reference graphs

27 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Package EAST
Synonym extraction

Package EAST

EAST = �Enhanced Annotated Su�x Trees�

Open-source:
https://github.com/msdubov/AST-text-analysis

Registered in Python Package Index and is easy to install:

$ pip install EAST

28 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

https://github.com/msdubov/AST-text-analysis

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Package EAST
Synonym extraction

Package EAST

Provides command-line user interface:

$ east keyphrases table <keyphrases_list.txt>

<path/to/the/text/collection/>

Can be used as a Python library:

>>> from east.asts.base import AST

>>> ast = AST.get_ast([''XAB'', ''XAC'', ''CAB''])

>>> ast.score(''ABC'')

0.3148148148148149

29 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Package EAST
Synonym extraction

Synonym extraction

EAST implements one laguage-dependent feature: synonym
extraction

Motivation: Relevance scores should be similar, say, for �plant
taxonomy� and �plant classi�cation�, even if the latter can be
rarely found in the text collection.

Algorithm: distributional synonym extraction algorithm based
on that by Lin [4], which employs the so-called dependency
triples (w1, r ,w2) (idea: similar texts appear in similar

contexts)

Domain-speci�c synonyms are likely to be found with this
context-based approach

30 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Package EAST
Synonym extraction

Synonym extraction

Dependency triples extraction is done by Yandex Tomita
parser (based on grammatical templates like �adjective +

substantive� or �verb + arverb�)

Grammar:

S -> adj_mod_of interp (Relation.adj_mod_of::...) |

adv_of interp (Relation.adv_of::norm="inf") |

adv interp (Relation.adv::norm="inf") |

...

adj_mod_of -> Adj<gnc-agr[1]> Noun<gnc-agr[1]>;

adv_of -> Adv Verb;

adv -> Verb Adv;

...

31 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Package EAST
Synonym extraction

Synonym extraction

Synonyms extracted from a text collection from the �Izvestia�
newspaper:

�head� (�ãëàâà�) ⇔ �CEO� (�ãåíäèðåêòîð�)
�high� (�âûñîêèé�) ⇔ �low� (�íèçêèé�)
. . .

Low precision is not very critical: among synonimous key
phrases we chose the one that has maxw∈syn(S) SCORE (w)

To extract synonyms before computing relevance scores:

$ east -s keyphrases table <keyphrases_list.txt>

<path/to/the/text/collection/>

32 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

Table of Contents

1 Annotated su�x trees
Su�x trees
Annotated su�x trees
AST relevance score

2 Algorithms
From su�x tries to su�x trees
From su�x trees to su�x arrays

3 Implementation
Package EAST
Synonym extraction

4 LM Monitor
Concept & architecture
Keyphrase reference graphs

33 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

LM Monitor: Concept

LM Monitor = �Latent Meaning Monitor� [2]
1 Web crawling

RuNeWC: Russian Newspaper Web Corpus
5 sources available now

2 Keyphrase analysis

Keyphrases are provided by the user
Using the AST relevance scores for these keyphrases, a
keyphrase reference graph is built
Text visualization tool

34 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

LM Monitor: Development

1 Research group �Text analysis and visualization methods�

2 Head: Boris Mirkin (Sc.D, prof.)

3 Sta�: Bachelor/Master/PhD students

35 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

LM Monitor: Architecture

36 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

LM Monitor: System

37 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

Keyphrase reference graphs

Keyphrase reference graphs:

Model directed relations between keyphrases

Nodes are keyphrases

For a keyphrase A,

r ∈ [0; 1] is a relevance threshold : if SCOREAST (T)(A) > r ,
then A is considered to be relevant to text T (usually r = 0.2)
F (A) = {T : SCOREAST (T)(A) > r}

c ∈ [0; 1] is a con�dence threshold

For keyphrases A and B , if |F (B)∩F (A)|
|F (A)| ≥ c , then there is an

edge in the graph from keyphrase A to keyphrase B (usually
c = 0.6)

A→ B is like an associative rule

38 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

LM Monitor: Keyphrase reference graphs

39 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

LM Monitor: Keyphrase reference graphs

40 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

LM Monitor: Keyphrase reference graphs

Figure: Keyphrase reference graph built for Oct/Nov 2014

41 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

LM Monitor: Keyphrase reference graphs

Figure: Keyphrase reference graph built USA/France constitutions

42 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

Future work

Automated graph analysis (central nodes visualization etc.)

Temporal graph analysis (how do graphs change over time?)

Better support for synonyms

43 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

Abouelhoda, M. I. Replacing Su�x Trees with Enhanced Su�x
Arrays / M. I. Abouelhoda, S. Kurtz, E. Ohlebusch // Journal
of Discrete Algorithms, Amsterdam: Elsevier. � 2004. � � 2. �
pp. 53-86.

Dubov, M. Automatic Russian Text Processing System /
M. Dubov, B. Mirkin, A. Shal // Open Systems. DBMS �
2014. � v. 22 � 10 � pp. 15-17

Gus�eld, D. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology / D. Gus�eld. �
Cambridge University Press, 1997.

Lin, D. Automatic Retrieval and Clustering of Similar Words. /
D. Lin // Proceedings of the 17th International Conference on
Computational Linguistics. � 1998. � pp. 768-774.

43 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

Annotated su�x trees
Algorithms

Implementation
LM Monitor

Concept & architecture
Keyphrase reference graphs

Mirkin, B. Method of annotated su�x tree for scoring the
extent of presence of a string in text / B. Mirkin, E. Chernyak,
O. Chugunova // Business-Informatics � 2012. � � 3(21). �
pp. 31-41.

43 / 43 Mikhail Dubov Text Analysis with Enhanced Annotated Su�x Trees

	Annotated suffix trees
	Suffix trees
	Annotated suffix trees
	AST relevance score

	Algorithms
	From suffix tries to suffix trees
	From suffix trees to suffix arrays

	Implementation
	Package EAST
	Synonym extraction

	LM Monitor
	Concept & architecture
	Keyphrase reference graphs

